
NUCLEON FORM FACTORS  
AND POLARIZABILITIES  

AT VERY LOW Q

Vladimir Pascalutsa 

Institut
University of Mainz, Germany @ N* 2015 

Osaka, Japan 
 May 25-28, 2015 



Vladimir Pascalutsa — Nucleon at Very Low Q — NStar 2015 — Osaka, May 25-2, 2015

Traditional tool — Electron Scattering
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3.2. Relation to Structure Functions
The optical theorem relates the absorptive parts of the forward VVCS amplitudes to the nucleon

structure functions, or equivalently, the cross sections of virtual-photon absorption �⇤N ! X: 7
eq:VVCSunitarity

ImT1(⌫, Q
2) =

4⇡2↵

M
f1(⌫, Q

2) = ⌫ �T (⌫, Q
2), (3.5a)

ImT2(⌫, Q
2) =

4⇡2↵

⌫
f2(⌫, Q

2) =
Q2⌫

⌫2 + Q2

⇥

�T + �L

⇤

(⌫, Q2), (3.5b)

ImS1(⌫, Q
2) =

4⇡2↵

⌫
g1(⌫, Q

2) =
M⌫2

⌫2 + Q2

hQ

⌫
�LT + �TT

i

(⌫, Q2), (3.5c)

ImS2(⌫, Q
2) =

4⇡2↵M

⌫2
g2(⌫, Q

2) =
M2⌫

⌫2 + Q2

h ⌫

Q
�LT � �TT

i

(⌫, Q2), (3.5d)

These unitarity relations hold in the physical region, where the Bjorken variable is confined to the
unit interval: x 2 [0, 1].

The structure functions describing the purely elastic scattering are given in terms of the elastic
FFs:eq:elstructure
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where ⌧ = Q2/4M2 and GE(Q2), GM(Q2) are the Sachs FFs,

GE = F1 + ⌧F2, GM = F1 + F2. (3.7)

Furthermore, � is the Dirac delta-function, such that

�(1 � x) = ⌫el �(⌫ � ⌫el), with ⌫el = Q2/2M = 2M⌧. (3.8)

In the asymptotic limit, Q2 ! 1, and fixed x, the structure functions are related to the parton
distribution functions. We are, however, interested in the limit where Q and ⌫ are small. In this case
the VVCS amplitudes can on one hand be expanded in terms of polarizabilities and electromagnetic
radii, and on the other in terms of moments of structure functions. This expansion and the resulting
relations between the static electromagnetic properties of the nucleon and the moments of structure
functions will be discussed further below. Before that, we need to establish the dispersion relations
for the forward VVCS amplitudes.

3.3. Analyticity and Dispersion Relations
Consider the analytic structure the VVCS amplitudes Ti and Si in the complex plane of ⌫. We

have already seen that the Born contribution contains the nucleon pole at the kinematics of elastic
scattering, ⌫el = Q2/2M . The inelastic particle-production processes are manifested in the branch
cuts, starting the at first threshold ⌫0 and extending to infinity. Neglecting the higher-order in ↵

7The definition of the flux factor for the virtual photons, which goes into the definitions of these cross sections, is
rather arbitrary. Our expressions correspond with a choice, and as the result these relations may differ in the literature
by an overall factor. The observable quantities will not be affected by this.
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2) moments of the inelastic structure functions related to polarizabilities

1) elastic part given by form factors 
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For example
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I. INTRODUCTION

The recent advent of muonic hydrogen spectroscopy [1] is probing the limits of our under-
standing of the nucleon’s electromagnetic structure. The unveiled discrepancy in the charge
radius value between probing the nucleon with muons [1, 2] or electrons [3, 4] is only 4%,
but is of great statistical significance (5 to 8 std deviations) at the current level of precision.
Interestingly enough, the accuracy of both muonic-hydrogen and electron-scattering mea-
surements is limited by the knowledge of subleading e↵ects of nucleon structure, entering
through the two-photon exchange (TPE). The main aim of our present studies is to pro-
vide predictions for these contributions from first principles using a low-energy e↵ective-field
theory of QCD, referred to as the baryon chiral perturbation theory (B�PT), see, e.g. [5].

In this endeavor we are primarily concerned with the doubly-virtual Compton scattering
(VVCS) process which carries all the nucleon structure information of the TPE. Unitarity
(optical theorem) relates the imaginary part of the forward VVCS amplitude to nucleon
structure functions, and then the use of dispersion relations allows one to write the low-
energy expansion of VVCS in terms of moments of structure functions [6]. The low-energy
expansion of VVCS can, on the other hand, be directly computed in �PT. Of course, not
all of the moments enter the low-energy expansion of VVCS: either only odd or only even
ones do, depending on the structure function. Here we shall present the leading-order (LO)
and next-to-leading-order (NLO) B�PT predictions for the following moments:
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and F1,2, g1,2 are respectively the unpolarized and polarized inelastic structure functions,
which depend on the photon virtuality Q

2 and the Bjorken variable x = Q

2
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⌫), with
M

N

the nucleon mass and ⌫ the photon energy; x0 corresponds with an inelastic threshold,
such as that of a pion production; ↵ is the fine-structure constant.

These gold-plated moments have already been the subject of intense experimental studies
[7–13], including an ongoing experimental program at Je↵erson Laboratory [14, 15], see
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FIG. 13. Longitudinal-transverse spin polarizabilities, �LT (Q
2), for

the proton and neutron as a function of Q2. For the blue band, the red
dashed line, and the black dotted line the legend is the same as in Fig. 7.
The blue dotted and orange dot-dashed lines are the O(p3) and O(p4)
calculations of Ref. [6], while the red band is the IR result of [35].
On the other hand, the grey band is the covariant BChPT calculation
including the �(1232) of Ref. [3]. The experimental points of �nLT are
from Ref. [28].
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FIG. 14. Different contributions to the longitudinal-transverse polariz-
ability. Blue dashed line: ⇡-cloud contribution, Green dot-dashed line:
�-pole contribution, Orange dotted line: ⇡� loops contribution, Red
solid line: Total.
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DeltaLT puzzle — none of chiral PT calculation describe neutron deltaLT.
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Proton Form Factors and RMS Radii
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FF interpretation: Fourier transforms of 
charge and magnetization distributions 
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ELECTRIC AND MAGNETIC FORM FACTORS OF THE PROTON PHYSICAL REVIEW C 90, 015206 (2014)

which is effectively point to point, reflected by the
error scaling, and a part which behaves systematically
as a function of the angle. The latter is estimated to be
below 0.1%.

(vi) The background estimation. Depending on the size of
the background below the elastic hydrogen peak this
error is estimated to be between 0.1% and 0.5%.

While the first point can be tested directly by fitting data
with varied cut-off energy, the other uncertainties have to be
treated by hand. To this end the cross sections are grouped
by the energy and by the spectrometer with which they are
measured. For each group, we define a linear function c(θ ) =
a(θ − θmin) interpolating from 0 for the smallest scattering
angle to the full estimated uncertainty at the maximum angle of
the group. The cross sections are then multiplied by 1 + c(θ ).
The sign of a was kept constant for all energies. The so-
modified cross sections were then refitted with the form-factor
models. In order to determine an upper and a lower bound
the fits were repeated with negated a. The uncertainties found
in this way are added quadratically to the uncertainties from
the radiative tail cutoff. The choice of a linear function in θ is
certainly arbitrary, but we checked several different reasonable
functional dependencies on θ and Q2, e.g., imitating the effect
of a spectrometer angle offset or target position offset. They
all produced similar results. The so-determined uncertainties
are reflected by the experimental systematic confidence bands
presented in this paper.

A possible source of uncertainty not from data but from
theory are the radiative corrections. The absolute value of the
radiative corrections should already be correct to better than
1% and a constant error in the correction will be absorbed
in the normalization. Any slope introduced as a function of
θ or Q2 by the radiation correction will be contained in the
slope-uncertainty discussed above up to a negligible residual;
it is therefore not considered.

In order to evaluate the influence of the applied Coulomb
correction, the amplitude of the correction was varied by
±50%. The so-modified cross sections are refitted with the
different models. The differences of the extracted form factors
to the results for the data with the unmodified correction are
shown as a band in Fig. 10.

Except for the phenomenological TPE model included in
the fit to the full data set, we do not include any theoretical
correction of the hard two-photon exchange to the cross sec-
tions in our analysis but apply Feshbach’s Coulomb correction.
Published Rosenbluth data normally do not include a Coulomb
correction. This has to be considered for comparisons of our
fits with old Rosenbluth separations.

3. Model dependence

An important issue is the question of whether the form-
factor functions are sufficiently flexible to be a suitable
estimator for the unknown true curve or whether they introduce
any bias, especially in the extraction of the radius. We have
studied this problem in two ways.

First, we used a Monte Carlo technique similar to the
method described in Sec. V D 1. We analyzed Monte Carlo
data sets produced at the kinematics of the data of the
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FIG. 10. (Color) The form factors GE and GM , normalized to the
standard dipole, and GE/GM as a function of Q2. Black line: Best fit
to the new Mainz data; blue area: statistical 68% pointwise confidence
band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%. The different data
points depict the previous measurements [2,4,43–45,47,48,50,53,55–
57,60,67,68,87–91] as in Refs. [2,4] with the data points of
Refs. [16,64,92] added.

present experiment with a series of published form factors:
the standard dipole, the Padé and polynomial descriptions of

015206-21

root-mean-square (rms) charge radius:

RE =

p
hr2iE

hr2iE ⌘
Z

dr r2 ⇢E(r) = �6
d

dQ2
GE(Q

2)
���
Q2=0

RE = 0.879(5)
stat

(4)
syst

(2)
model

(4)
group

fm,

RM = 0.777(13)
stat

(9)
syst

(5)
model

(2)
group

fm.

J. C. Bernauer et al., Phys. Rev. C90,015206 (2014).

⇢(r) =

Z
dq

(2⇡)3
G(q2)e�iqr

GE(Q
2) = 1� 1/6R2

E Q2 + · · ·



Vladimir Pascalutsa — Nucleon at Very Low Q — NStar 2015 — Osaka, May 25-2, 2015

Proton radius puzzle
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[RCODATA 2010
E = 0.8775(51) fm]

7σ discrepancy

[1]  J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010). 
[2]  P. J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012). 
[3]  R. Pohl, A. Antognini et al., Nature 466, 213 (2010). 
[4]  A. Antognini et al., Science 339, 417 (2013).
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The proton radius puzzle

Measure the 2S − 2P splitting in µp

↓

determine the proton rms radius rp
(10× better )

But large discrepancy observed:
• 4σ from H spectroscopy value
• 6σ from e-proton scattering value

A. Antognini
MPQ, Garching, Germany
ETH, Zurich, Switzerland

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1

Thursday, March 14, 13
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Proton Radius — Historical Perspective
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NS63CH08-Pohl ARI 28 September 2013 9:38
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Figure 1
Proton radius determinations over time. Electronic measurements seem to settle around rp = 0.88 fm,
whereas the muonic hydrogen value (1) is 0.84 fm. (Left to right) Values from Orsay (10), Stanford (11),
Saskatoon (12, 13), and Mainz (14) (all in blue) are early electron scattering measurements. Recent scattering
measurements are from MAMI (4) and JLab (32). The green points denote various reanalyses of the world
electron scattering data ( from left to right: References 18, 39, 25, 15, 38, and 41). The red symbols represent
data originating from laser spectroscopy of atomic hydrogen and advances in hydrogen QED theory (see
Reference 3 and references therein). The world data from both electron scattering and hydrogen and
deuterium spectroscopy have determined the value of rp in the CODATA adjustments (3, 16) since the 2002
edition.

transition in hydrogen has been measured with an accuracy of four parts in 1015 (20). Other
transitions, especially the two-photon transitions between the metastable 2S state and the 8S,D
(21) or 12D (22) state, have been measured with accuracies around one part in 1011. For a review
of the relevant transition frequencies in hydrogen and deuterium, see Reference 3.

QED describes the energy levels of hydrogen with extraordinary accuracy. The test of QED
that uses measured transition frequencies in hydrogen is limited by two input parameters required
in QED calculations, namely the Rydberg constant, R∞, and the root-mean-square proton radius,
rp . Thus, one can either supply any of these two numbers from a source other than hydrogen
spectroscopy (such as rp from elastic electron–proton scattering or muonic hydrogen), and then
test the correctness of QED, or use QED to extract the fundamental constants R∞ and rp .

Somewhat simplified, the energies of S-states in hydrogen are given by

E(nS) ≃ − R∞

n2 + L1S

n3 , 4.

where n is the principal quantum number and L1S denotes the Lamb shift of the 1S ground state,
which is given by QED and contains the effect of the proton charge radius, rp. Numerically,

178 Pohl et al.
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Nucleon Structure from Lattice QCD Using a Nearly Physical Pion Mass

J. R. Green,1 M. Engelhardt,2 S. Krieg,3 J. W. Negele,1 A. V. Pochinsky,1 and S. N. Syritsyn4, ⇤

1

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2

Physics Department, New Mexico State University, Las Cruces, New Mexico 88003, USA

3

Bergische Universität Wuppertal, D-42119 Wuppertal,
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We report the first lattice QCD calculation using the almost physical pion mass m⇡ = 149 MeV
that agrees with experiment for four fundamental isovector observables characterizing the gross
structure of the nucleon: the Dirac and Pauli radii, the magnetic moment, and the quark momentum
fraction. The key to this success is excluding the contributions of excited states. An analogous
calculation of the nucleon axial charge governing beta decay fails to agree with experiment, and we
discuss possible sources of error.

PACS numbers: 12.38.Gc, 13.60.Fz

INTRODUCTION

Lattice QCD is the only known rigorous framework
for ab-initio calculation of the structure of protons and
neutrons with controllable errors. It can provide quanti-
tative answers to both fundamental questions such as the
quark and gluon composition of the nucleon spin and phe-
nomenological questions such as the sensitivity of modern
detectors to physics beyond the Standard Model (BSM),
to fundamental symmetry violations, and to hypothetical
dark matter particles [1–3]. However, with current com-
puter resources, its predictive power is limited by uncer-
tainties arising from heavier than physical quark masses,
finite lattice spacing and volume, incomplete removal of
excited states, and omission of disconnected contractions.
Therefore, until exhaustive lattice calculations remove
these uncertainties, reproducing several well-known ex-
perimental observables is an important way to increase
confidence in lattice QCD predictions.

Significant e↵ort has been focused on lattice calcula-
tions of several isovector quantities1 such as the Dirac
and Pauli radii (r2

1,2)
v, the axial charge gA, and the quark

momentum fraction hxiu�d:

hp0|q̄�µ
q|pi = ūp0

⇥
F

q
1

(Q2)�µ + F

q
2

(Q2)
i�

µ⌫
q⌫

2M

⇤
up,

F

q
1,2(Q

2) ⇡
Q2!0

F

q
1,2(0)

�
1 � 1

6
(r2

1,2)
q
Q

2 + O(Q4)
�
,

(1)

hp|q̄�{µ
$
D⌫}q|pi = hxiq ūp�{µp⌫}up, (2)

hp|q̄�µ
�

5

q|pi = gA ūp�
µ
�

5

up , (3)

⇤
ssyritsyn@lbl.gov

1

So-called disconnected contractions, which are expensive to com-

pute, cancel in isovector observables, making them ideal for ver-

ifying lattice QCD.

where Q

2 = �q

2 = �(p0 � p)2 and up, up0 are nucleon
spinors. Although some success has been achieved [4–
9], past results rely heavily on large extrapolations using
Chiral Perturbation Theory (ChPT) yielding potentially
uncontrollable corrections. This is particularly problem-
atic for some observables, e.g., (r2

1,2)
v and hxiu�d, for

which ChPT predicts rapid change towards the chiral
regime, making extrapolations very di�cult. For ex-
ample, in typical lattice calculations with pion masses
& 250 MeV, prior to extrapolation to m

phys

⇡ ⇡ 135 MeV,
(r2

1

)v is underestimated by ⇡ 50% [6–8, 10], hxiu�d over-
estimated by 30�60% [5, 11, 12], and gA underestimated
by ⇡ 10% [4, 13, 14], compared with experiment. These
glaring discrepancies and the dependence on large extrap-
olations clearly indicate the need for calculations near the
physical pion mass. Moreover, it has recently been found
that excited-state e↵ects become worse with decreasing
pion mass [15], and their careful analysis is required be-
fore even attempting extrapolations in the pion mass to-
wards the physical point using ChPT.

In this paper, we report the first lattice QCD calcu-
lation of nucleon structure using pion masses as light as
m⇡ = 149 MeV and thus very close to the physical value;
therefore, our results rely much less on ChPT extrapo-
lations than previous calculations. For each ensemble,
we remove excited-state contaminations by varying the
source-sink separation in the range ⇡ 0.9 . . . 1.4 fm and
apply the summation method [16] to extract the ground
state matrix elements. We observe remarkable agreement
with experiment of the isovector Dirac and Pauli radii,
the anomalous magnetic moment, and the quark momen-
tum fraction, all computed with the same methodology.
However, as we will see later, the axial charge gA is still
underpredicted and requires further studies.
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FIG. 1. Isovector Dirac radius (r2
1
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same fits applied to the full set of solid points are shown for
comparison. The two experimental points are from PDG [24]
and the µp Lamb shift [23]. The series of open symbols show
data before the removal of excited states, with fixed source-
sink separation �t increasing from right to left. Their error
bars reflect only statistical errors, which grow with �t.
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0  Q

2  0.5 GeV2.

The Dirac radius (r2
1

)v is shown in Fig. 1. We compare
it to the experimental value (r2

1

)v = (r2
1

)p � (r2
1

)n, where
(r2

1

)p,n = (r2E)p,n � 3p,n

2M2

p,n
, with the error bar dominated

by the uncertainty in (r2E)p, the proton electric charge
radius. We show two experimental values for (r2

1

)v in
Fig. 1, which correspond to two inconsistent values for
(r2E)p: the PDG value [24] and the recent and controver-
sial result from measurement of the µp Lamb shift [23].
Relative to the lattice uncertainty, the extrapolated value
deviates from the µp Lamb shift value by �0.07� and
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from the PDG value by �2.17�. In addition, we check
the low-energy QCD dynamics by repeating the ChPT
fit without the �-resonance, shown as the dotted lines
in Fig. 1. In this case, we observe somewhat worse fit
quality (see Tab. II, line 2), especially when the full m⇡

range is included in the fit, demonstrating the relevance
of the �-resonance.

In a similar fashion, we extract the isovector anoma-
lous magnetic moment 

v = 

p�

n and the Pauli radius
(r2

2

)v = (p(r2
2

)p�

n(r2
2

)n)/(p�

n) from the Pauli form
factor F

2

(Q2). In this case the results are less precise

because the forward values F

2

(0) and dF
2

(0)

dQ2

are extrapo-

lated using the dipole form F

v
2

(Q2) ⇠ v

(1+Q2/M2

D2

)

2

. Since

the minimal value Q

2

> 0 scales roughly as Q

2

min

⇠ 1

L2

s
,

the Q

2 fits are less precise on lattices with smaller spa-
tial volumes. This explains the significant increase of
error bars in Figs. 2, 3 going from 323 to 243 lattices
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from the PDG value by �2.17�. In addition, we check
the low-energy QCD dynamics by repeating the ChPT
fit without the �-resonance, shown as the dotted lines
in Fig. 1. In this case, we observe somewhat worse fit
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one-photon exchange

electromagnetic vertex:          


 

where 

photon propagator:                       


in Coulomb gauge

�Vsize =
�
2Ek 2Ek0 2Ep 2Ep0

��1/2
ū(k0)(�e�µ)u(k)�µ⌫(q) N̄(p0)e�⌫N(p)

�µ = Z�µF1(Q
2)� 1

2M
�µ⌫q⌫F2(Q

2)

Q2 = �q2� 1

q2


gµ⌫ � 1

q2 + t
(qµq⌫ � �µq⌫ � �⌫qµ)

�

� = (0, q)
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Dirac & Pauli FFs:

Pion-massdispersionrelationVladimirPascalutsa

1.Introduction

Itiswell-knownthatthechiralperturbationtheory(χPT)isabletopredictsome‘non-analytic’
dependenciesofstaticquantities(masses,magneticmoments,etc.)onpion-masssquared,orthe
quarkmass(m2π∼mq).Itisthereforeinterestingtoexaminetheoriginofthesedependencies
arisingbyconsideringtheanalyticpropertiesofchiralexpansionintheentirecomplexm2πplane.

(b)(c)(d) (a)

Figure1:Examplesofchiral-loopcorrectionstothenucleonmass.Nucleon(pion)propagatorsaredenoted
bysolid(dashed)lines.

t

Figure2:Thebranchcutandthecon-
tourdefiningtheanalyticitydomainin
thecomplexplaneoft=m2π.

Consideringthechiralloopswithexternalnucleons
onshell,asinthegraphsofFig.1arisingintheorigi-
nal(manifestlyLorentz-invariant)formulationofbaryon
χPT(BχPT)[1],weobservethattheyareanalyticfunc-
tionsofm2πeverywhereexceptforthebranchcutalong
thenegativeaxis,seeFig.2.Inthiscaseitispossibleto
writedownasimpledispersionrelationinthepion-mass
squared[2]:

f(m2
π)=−

1
π

0∫

−∞

dt
Imf(t)

t−m2π+i0+,(1.1)

wherefisachiral-loopcorrectiontoastaticquantity,or
thestaticquantityitself;0+isaninfinitesimalpositivenumber.

Severalapplicationsofthisdispersionrelationhavebeendiscussedin[2].Hereweshall
focusonastudyoflargediscrepanciesbetweentheleading-orderheavy-baryon(HB)[3,4]and
BχPT[1,5]calculationsencounteredine.g.Refs.[6–9].

2.BχPTvs.HBχPTatO(p3)

Thechiralexpansionofastaticquantityfisanexpansioninthequarkmassmqaroundthe
chirallimit(mq→0),whichinχPTbecomesanexpansioninp=mπ/Λχ,themassofthe
pseudo-Goldstonebosonofspontaneouschiralsymmetrybreakingoverthescaleofchiralsymme-
trybreakingΛχ≃4πfπ≈1GeV.Becauseofthebranchcutinthecomplex-m2πplanealongthe
negativereal-axis,thechiralexpansionisnotaseriesexpansion(otherwise,itwouldhaveazero
radiusofconvergence),butratheranexpansioninnon-integerpowersofm2π∝mq.

Bywritingthedispersionintegralas:

f(m2
π)=−

1
π

⎛

⎜

⎝

0∫

−Λ2χ

+

−Λ2
χ ∫

−∞

⎞

⎟

⎠dt
Imf(t)
t−m2π,(2.1)

2

Fi(q
2) =

1

⇡

Z 1

t0

dt
ImFi(q2)

t� q2 � i✏

q2

t0

t0 is the lowest particle production threshold


(timelike photon is unstable)
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contribution of          to classic Lamb shift at                                                
1st-order perturbation theory (PT): 

Yukawa-type potential:            


electric FF correction to the Coulomb potential

�E
FF(1)
2P�2S = h2P1/2 |VY | 2P1/2i � h2S1/2 |VY | 2S1/2i

= � (Z↵)4m3
r

2⇡

Z 1

t0

dt
Im GE(t)

(
p
t+ Z↵mr)4

= � (Z↵)4m3
r

12

1X

k=0

(�Z↵mr)k

k!
hrk+2iE

= � (Z↵)4m3
r

12

⇥
hr2iE � Z↵mrhr3iE

⇤
+O(↵6)

VY (r) =
Z↵
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⇡

Z 1
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dt

t
e�r

p
t Im GE(t)

VY (r)

convergence radius 

of the expansion 

is limited by  t0
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Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift
in moments of charge distribution

Franziska Hagelstein and Vladimir Pascalutsa
Institut für Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
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We quantify a limitation in the usual accounting of the finite-size effects, where the leading [(Zα)4] and
subleading [(Zα)5] contributions to the Lamb shift are given by the mean-square radius and the third Zemach
moment of the charge distribution. In the presence of any nonsmooth behavior of the nuclear form factor at
scales comparable to the inverse Bohr radius, the expansion of the Lamb shift in the moments breaks down. This
is relevant for some of the explanations of the “proton size puzzle.” We find, for instance, that the de Rújula
toy model of the proton form factor does not resolve the puzzle as claimed, despite the large value of the third
Zemach moment. Without relying on the radii expansion, we show how tiny, milli-percent (pcm) changes in the
proton electric form factor at a MeV scale would be able to explain the puzzle. It shows that one needs to know
all the soft contributions to the proton electric form factor to pcm accuracy for a precision extraction of the proton
charge radius from atomic Lamb shifts.

DOI: 10.1103/PhysRevA.91.040502 PACS number(s): 31.30.jr, 14.20.Dh, 13.40.Gp, 11.55.Fv

I. INTRODUCTION

The proton structure is long known to affect the hydrogen
spectrum, predominantly by an upward shift of the S levels
expressed in terms of the root-mean-square (rms) radius,

RE =
√

⟨r2⟩E, ⟨rN ⟩E ≡
∫

dr⃗ rNρE(r⃗), (1)

of the proton charge distribution ρE . At leading order (LO)
in the fine-structure constant α, the nth S level is shifted by
(cf. [1])

#EnS(LO) = 2(Zα)4m3
r

3n3
R2

E, (2)

where Z = 1 for the proton, mr is the reduced mass. The
proton charge radius has thus been extracted from the hydrogen
(eH) and muonic-hydrogen (µH) Lamb shifts, with rather
contradictory results:

REp(eH) = 0.8758(77) fm [2], (3a)

REp(µH) = 0.84087(39) fm [3,4]. (3b)

The eH value is backed up by the extractions from electron-
proton (ep) scattering [5,6], albeit with a notable exception [7].

The next-to-leading order (NLO) effect of the nuclear
charge distribution is given by [8]

#EnS(NLO) = − (Zα)5m4
r

3n3
R3

E(2), (4)

with RE(2) = 3
√

⟨r3⟩E(2) the Friar radius and

⟨r3⟩E(2) =
∫

dr⃗ ρE(r⃗ )
∫

dr⃗ ′ |r⃗ − r⃗ ′|3 ρE(r⃗ ′) (5)

the third Zemach moment. Other α5 effects of proton structure,
such as polarizabilities, play a lesser role in both normal and
muonic hydrogen, and are not in anyway of relevance to the
present discussion of finite-size effects.

A Lorentz-invariant definition of the above moments is
given in terms of the electric form factor (FF), GE(Q2), as

⟨r2⟩E = −6
d

dQ2
GE(Q2)

∣∣∣∣
Q2=0

, (6a)

⟨r3⟩E(2) = 48
π

∫ ∞

0

dQ

Q4

{
G2

E(Q2) − 1 + 1
3
Q2⟨r2⟩E

}
. (6b)

At the current level of precision, the eH Lamb shift sees only
the LO term, while in µH the NLO term becomes appreciable.
An immediate resolution of the eH vs µH discrepancy (also
known as the proton size puzzle) was suggested by de
Rújula [9], whose toy model for proton charge distribution
yielded a large Friar radius, capable of providing the observed
µH Lamb shift using the RE value from eH. Shortly after, this
model was shown to be incompatible with the empirical FF
GE extracted from ep scattering [10,11]. In this work we find
that the µH Lamb shift in de Rújula’s model is not described
correctly by the standard formulas of Eqs. (2) and (4). The
correct result involves an infinite series of moments, and it
does not provide any significant reduction of the discrepancy in
that model. We shall consider a different scenario of mending
the discrepancy by a small change in the proton FF, using the
corrected formalism.

II. LAMB SHIFT: TO EXPAND OR NOT

Our main observation is that the standard expansion in the
moments is only valid provided the convergence radius of the
Taylor expansion of GE in Q2 is much larger than the inverse
Bohr radius of the given hydrogen-like system. In other words,
for Q2 ∼ (Zαmr )2, the electric FF must be representable by a
quickly convergent power series.

To see this we write the electric FF correction to the
Coulomb potential (−Zα/r) as follows:

VFF(r) = Zα

πr

∫ ∞

t0

dt

t
e−r

√
t Im GE(t), (7)

where Im GE is the discontinuity in the FF across the branch
cuts in the time-like region. This potential is derived by taking

1050-2947/2015/91(4)/040502(5) 040502-1 ©2015 American Physical Society
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EFF(1)
2P�2S =

Z 1

0
dQw(Q)GE(Q

2)

= �1

3
⇡(Z↵)4m3

r

Z 1

0
dr r4e�r/a⇢E(r)

w(Q) = � 4

⇡
(Z↵)5m4

r Q
2 (Z↵mr)2 �Q2

[(Z↵mr)2 +Q2]4
,     with

alternatively:

EFF(1)
2P�2S = �1

3
⇡(Z↵)4m3

r

Z 1

0
dr r4e�r/a⇢E(r)

⇢E(r) =
1

(2⇡)2 r

Z 1

t0

dt Im GE(t) e
�r

p
t

with
a = 1/(Z↵mr) Bohr radius

w(Q) = � 4

⇡
(Z↵)5m4

r Q
2 (Z↵mr)2 �Q2

[(Z↵mr)2 +Q2]4
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numerical values reviewed in: A. Antognini et al., Annals Phys. 331, 127-145 (2013).

subleading effects of 
proton structure 

proposed to resolve 
the puzzle

�V (2�) = �V (2�)
elastic

+ �V (2�)
polariz.
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Vladimir Pascalutsa — A few moments in ChPT — Workshop on Tagged Structure Functions — JLab, Jan 16-18, 2014

Baryon ChPT
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The 1st nucleon excitation — Delta(1232) is within reach 
of chiral perturbation theory (293 MeV excitation energy is 
a light scale) 

Include into the chiral effective Lagrangian as explicit dof 

Power-counting for Delta contributions (SSE,  ``delta-
counting”) depends on what chiral order is assigned to the 
excitation scale. 

Not just the pion cloud: Delta(1232) excitation

Jenkins & Manohar, PLB (1991) 
Hemmert, Holstein, Kambor, JPhysG (1998) 
V.P. & Phillips, PRC (2003) Δ (1232) M1/E2



Vladimir Pascalutsa — ChPT in Puzzles — CIPANP 2015 — Vail CO, May 19-24, 2015

ChPT of Compton scattering (RCS) on proton

16

size of the red blob

LO

NLO NNLO

Lensky & V.P., EPJC (2010)  
��

��

��

��

��

��

�� �� ��� ��� ��� ���

���
��
�

�����

��
��
���
��

����

����������

���

� �
��
��
���
��

��
���

� �

������������������

����

��������



Vladimir Pascalutsa — Nucleon at Very Low Q — NStar 2015 — Osaka, May 25-2, 2015

Unpolarized cross sections for RCS

17

Data points:
MAMI/TAPS 
(2001)
SAL (1993)
Illinois (1991)

Curves:

Klein-Nishina

Born + WZW

+ p-qube

Total NNLO

Lensky & V.P.,EPJC (2010)
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extension to virtual photons 

Alarcon, Lensky & VP, PRC90(2014)
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Curves:
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[Bernard,Krebs,
Epelbaum, 
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Data points:
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Vladimir Pascalutsa — Nucleon at Very Low Q — NStar 2015 — Osaka, May 25-2, 2015

Polarizability contribution in ChPT

20

Eur. Phys. J. C (2014) 74:2852
DOI 10.1140/epjc/s10052-014-2852-0

Regular Article - Theoretical Physics

Chiral perturbation theory of muonic-hydrogen Lamb shift:
polarizability contribution

Jose Manuel Alarcón1,a, Vadim Lensky2,3, Vladimir Pascalutsa1

1 Cluster of Excellence PRISMA Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz 55099, Germany
2 Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
3 Institute for Theoretical and Experimental Physics, Bol’shaya Cheremushkinskaya 25, 117218 Moscow, Russia

Received: 6 December 2013 / Accepted: 9 April 2014 / Published online: 29 April 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The proton polarizability effect in the muonic-
hydrogen Lamb shift comes out as a prediction of baryon
chiral perturbation theory at leading order and our calcu-
lation yields !E (pol)(2P − 2S) = 8+3

−1 µeV. This result is
consistent with most of evaluations based on dispersive sum
rules, but it is about a factor of 2 smaller than the recent result
obtained in heavy-baryon chiral perturbation theory. We also
find that the effect of !(1232)-resonance excitation on the
Lamb shift is suppressed, as is the entire contribution of the
magnetic polarizability; the electric polarizability dominates.
Our results reaffirm the point of view that the proton structure
effects, beyond the charge radius, are too small to resolve the
‘proton radius puzzle’.

1 Introduction

The eight standard-deviation (7.9σ ) discrepancy in the value
of proton’s charge radius obtained from elastic electron–
proton scattering [1] and hydrogen spectroscopy [2] on one
hand and from the muonic-hydrogen (µH) spectroscopy
[3,4] on the other, a.k.a. the proton charge radius puzzle [5,6],
is yet to meet its fully agreeable solution. One way to solve
it is to find an effect that would raise the µH Lamb shift by
about 310 µeV, and it has been suggested that proton struc-
ture could produce such an effect at O(α5

em), e.g. [7,8]. Most
of the studies, however, derive an order of magnitude smaller
effect of proton structure beyond the charge radius [9–15].

The O(α5
em) effects of proton structure in the Lamb shift

are usually divided into the effect of (i) the 3rd Zemach
moment, (ii) finite-size recoil, and (iii) polarizabilities. The
first two are sometimes combined into (i′) the ‘elastic’ 2γ

contribution, while the polarizability effect is often split
between (ii′) the ‘inelastic’ 2γ and (iii′) a ‘subtraction’ term,

a e-mail: alarcon@kph.uni-mainz.de

cf. Table 1. The ‘elastic’ and ‘inelastic’ 2γ contributions are
well constrained by the available empirical information on,
respectively, the proton form factors and unpolarized struc-
ture functions. The ‘subtraction’ contribution must be mod-
eled, and in principle one can make up a model where the
effect is large enough to resolve the puzzle [8].

In this work we observe that chiral perturbation theory
(χPT) contains definitive predictions for all of the above
mentioned O(α5

em) proton structure effects, hence no model-
ing is needed, assuming of course that χPT is an adequate the-
ory of the low-energy nucleon structure. Some of the effects
were already assessed in the heavy-baryon variant of the the-
ory (HBχPT), namely: Nevado and Pineda [11] computed the
polarizability effect to leading order (LO) [i.e., O(p3)], while
Birse and McGovern [13] computed the ‘subtraction’ term
in O(p4) HBχPT (with the caveat explained in the end of
Sect. 4). Here, on the other hand, we work in the framework of
a manifestly Lorentz-invariant variant of χPT in the baryon
sector, referred to as BχPT [16–19]. At least the LO results
for nucleon polarizabilities are known to be very different
in the two variants of the theory, e.g., the proton magnetic
polarizability is (in units of 10−4 fm3): 1.2 in HBχPT [20]
vs. −1.8 in BχPT [21–23]. Thus, the LO effect of the pion
cloud is paramagnetic in one case and diamagnetic in the
other (see [24,25] for more on HBχPT vs. BχPT). Due to
these qualitative and quantitative differences it is interesting
to examine the BχPT predictions for the 2γ contributions to
the Lamb shift. Here we compute the polarizability effect at
LO BχPT and indeed find it significantly different from the
LO HBχPT results of Nevado and Pineda [11]; see Table 1.

Our result for the ‘subtraction’ and ‘inelastic’ contribu-
tions differ from most of the previous works because we have
neglected the effect of the nucleon transition into its lowest
excited state—the !(1232). We argue, however (in Sect. 3),
that the latter effect cancels out of the polarizability contri-
bution. Thus, even though the ‘subtraction’ and ‘inelastic’
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The leading-order prediction of proton polarizability-like effect on the muonic hydrogen Lamb shift is ob-
tained in baryon chiral perturbation theory. The magnitude of the effect is �E(2P � 2S) ' 8µeV, which is
consistent with previous calculations based on heavy-baryon chiral perturbation theory and dispersion theory.
Our result rules out the scenarios where the ”proton charge radius puzzle” is solved by O(↵5

em) effects of proton
structure on the side of muonic hydrogen.

PACS numbers:

The ”proton charge radius puzzle” stands for the discrep-
ancy in the value of proton’s charge radius obtained form elas-
tic electron-proton scattering measurements [1] and atomic
measurements of the normal hydrogen [2] on one hand, and
the muonic hydrogen (µH) spectroscopy [3] on the other. The
discrepancy is almost 8 standard deviations (i.e., 7.7�). One
way to mend it is to find an effect which would raise the µH
Lamb shift by about 310 µeV and it has been suggested that
proton structure can produce such an effect at O(↵5

em

). Most
of the studies, however, derive a very modest effect of proton
structure beyond the charge radius.

Namely, the measured Lamb shift for the muonic hydrogen
is around 300 µeV lower than one expects from theory using
the charge radius deduced from normal hydrogen. This dif-
ference could be due to the internal electromagnetic structure
of the proton since, due to its larger mass, the muon is much
closer to the proton than the electron. Several studies have
been done investigating the effects of the internal electromag-
netic structure of the proton to the muonic hydrogen Lamb
shift. They point to a contribution of the order of -10µeV,
which is one order of magnitude smaller than needed to recon-
cile the electronic and muonic hydrogen measurements. Re-
cently, it was suggested that this difference could be accounted
for by effects of the proton magnetic polarizability at large vir-
tualities in the two photon exchange diagrams [4].

In this letter we investigate the contribution of the hadronic
structure of the proton to the muonic hydrogen Lamb shift.
They enter in the two photon exchange diagrams and are
related to the forward double virtual Compton scattering
(VVCS) on the proton. These contributions to the Lamb shift
can be parametrized in terms of the Compton tensor Tµ⌫ . This
embodies the information on the response of the proton due
to electromagnetic probes. For forward scattering, the spin-
averaged Compton tensor takes the form [5]

(b) (c)(a)

(d) (e) (f )

(g) (h) (j)

(k)

�

FIG. 1: Diagrams considered for the calculation of T1 and T2. Only
the direct process in the VVCS is shown. Double line represents the
�(1232) propagator.

Tµ⌫(P, q) =
i

8⇡m
N

Z
d4 eiq·xhp|Tjµ(x)j⌫(0)|pi

=

✓
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qµq⌫

q2

◆
T1(⌫, Q

2)

+
1

m2
N

✓
Pµ � P · q

q2
qµ

◆✓
P ⌫ � P · q

q2
q⌫
◆
T2(⌫, Q

2), (1)

where m
N

is the nucleon mass, P and q are the proton and
photon momenta, respectively , ⌫ = P ·q/m

N

and Q2 = �q2

is the virtuality of the photons.
On the other hand, since we are interested in the O(↵5

em

)
contributions, we considered that the external muon and pro-
ton lines have zero three-momentum, which implies that ⌫ =
P · q/m

N

= q0. Corrections due to finite three-momenta are
higher orders in ↵

em

.
From this consideration, one can derive a very simple sum

rule to connect T1 and T2 to the Lamb shift correction �E
nS

[5]

= with corrections 
to elastic  

proton FFs  
subtracted, 

i.e. “polarizability” 
alone
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of Nevado and Pineda [11] at zero energy (ν = 0), up to a
convention for an overall normalization of the amplitudes.
We have also reproduced their expressions for T1 and T2 (cf.
Eq. (3.2) and (3.5) in Ref. [11]) for all ν and Q2.

Substituting these expressions into (12), we obtain the
following value for the polarizability contribution to the 2S-
level shift in µH:

"E (pol)
2S (LO-HBχPT) = −17.85 µeV. (19)

This is slightly different from the result of Ref. [11] that we
quote in Eq. (11), which is because of the neglected energy
dependence, i.e., the use of the LEX in deriving Eq. (12) from
(6). Still, the difference between the exact and LEX result is
well within the expected 15 % uncertainty of such calculation
and hence we conclude that the LEX approximation works
well in this case too.

Substitution to Eq. (17) yields the HBχPT predictions for
the ‘inelastic’ and ‘subtraction’ contributions:

"E (subt)
2S (LO-HBχPT) = 1.3 µeV, (20a)

"E (inel)
2S (LO-HBχPT) = −19.1 µeV. (20b)

Neglecting for a moment the difference between τπ and τµ,
we obtain very simple closed expressions for the Lamb-shift
contributions:

"E (pol)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

4(4π fπ )2

mµ

mπ
(1−10G+6 log 2)=−16.1 µeV, (21a)

"E (subt)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 2G + 2 log 2) = 1.1 µeV, (21b)

"E (inel)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 18G+10 log 2) = −17.2 µeV,

(21c)

where G ≃ 0.9160 is the Catalan constant. This should pro-
vide an impression of the parametric dependencies arising
in χPT for this effect. The resulting numbers are within the
expected uncertainty for HBχPT result, and they can in prin-
ciple be easily improved in a perturbative treatment of the
pion–muon mass difference.

So far we have been discussing the O(p3) result. At higher
orders one in addition to the VVCS calculation needs to con-
sider the appropriate operators from the effective lepton–
nucleon Lagrangian with corresponding low-energy con-
stants fixed to, e.g., the low-energy lepton–nucleon scatter-

Footnote 1 continued
come from the expansion of the leading pion loop contribution to the
term βM1 Q2 in powers of mπ and hence are part of δβ in that reference.

ing. Birse and McGovern [13] computed the VVCS ampli-
tude T1(0, Q2) to order O(p4), but they evaded the consider-
ation of the lepton–nucleon terms by introducing a “physical
cutoff” in Q. Hence, their resulting calculation of the subtrac-
tion term is strongly cutoff dependent and lies, strictly speak-
ing, outside the χPT framework; we refer to it as “HBχPT-
inspired” calculation.

5 “Effectiveness” of HBχPT vs. BχPT

Although at high enough orders HBχPT and BχPT are
bound to yield the same results, at low orders this is not
necessarily so and practice shows that especially at ‘predic-
tive’ orders, where there are no free low-energy constants
to absorb the differences, HBχPT and BχPT results differ
substantially, sometimes even in the sign of the total effect
(cf. the order p3 result for the magnetic polarizability of the
nucleon [24,26]). The proton polarizability contribution to
the Lamb shift is apparently such a case as well. So, hav-
ing found the substantial differences between the HBχPT
and BχPT predictions the obvious question is: which one is
more reliable, if any?

A rather common point of view is that, since HBχPT
neglects only the effects of “higher order”, any substantial
disagreement only signals the importance of higher-order
effects and hence neither of the calculations should be trusted
at this order. On the other hand, it is plausible that not all the
higher-order effects are large, but only the ones present in
the BχPT calculation and dismissed in the one of HBχPT.
In support of the latter scenario is the physical principle
of analyticity—consequence of (micro-)causality, which in
BχPT is obeyed exactly, while in HBχPT it is obeyed only
approximately, albeit improvable order by order.

Another, perhaps more quantitative criterion is the one put
forward by Strikman and Weiss [32]. In the interpretation of
Ref. [24], it requires that the high-momentum contribution
of finite (renormalized) loop integrals over quantities which
are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calcula-
tion. In other words, the contribution from beyond the scales
at which the effective theory is applicable should not exceed
a natural estimate of missing higher-order effects.

In our case the VVCS amplitudes are such quantities
invariant under redefinitions of pion and nucleon fields and
hence it makes sense to examine Fig. 4, where the polariz-
ability effect is plotted as a function of the ultraviolet cutoff
Qmax imposed on the momentum integration in (12).

The figure clearly shows that the relative size of the high-
momentum contribution in the HBχPT case is substantially
larger than in BχPT.

Assuming the breakdown scale for χPT is of order of the
ρ-meson mass, mρ = 777 MeV, we can make a more quanti-
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of Nevado and Pineda [11] at zero energy (ν = 0), up to a
convention for an overall normalization of the amplitudes.
We have also reproduced their expressions for T1 and T2 (cf.
Eq. (3.2) and (3.5) in Ref. [11]) for all ν and Q2.

Substituting these expressions into (12), we obtain the
following value for the polarizability contribution to the 2S-
level shift in µH:

"E (pol)
2S (LO-HBχPT) = −17.85 µeV. (19)

This is slightly different from the result of Ref. [11] that we
quote in Eq. (11), which is because of the neglected energy
dependence, i.e., the use of the LEX in deriving Eq. (12) from
(6). Still, the difference between the exact and LEX result is
well within the expected 15 % uncertainty of such calculation
and hence we conclude that the LEX approximation works
well in this case too.

Substitution to Eq. (17) yields the HBχPT predictions for
the ‘inelastic’ and ‘subtraction’ contributions:

"E (subt)
2S (LO-HBχPT) = 1.3 µeV, (20a)

"E (inel)
2S (LO-HBχPT) = −19.1 µeV. (20b)

Neglecting for a moment the difference between τπ and τµ,
we obtain very simple closed expressions for the Lamb-shift
contributions:

"E (pol)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

4(4π fπ )2

mµ

mπ
(1−10G+6 log 2)=−16.1 µeV, (21a)

"E (subt)
2S (LO-HBχPT)

≈ α5
emm3

r g2
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8(4π fπ )2

mµ

mπ
(1 − 2G + 2 log 2) = 1.1 µeV, (21b)

"E (inel)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 18G+10 log 2) = −17.2 µeV,

(21c)

where G ≃ 0.9160 is the Catalan constant. This should pro-
vide an impression of the parametric dependencies arising
in χPT for this effect. The resulting numbers are within the
expected uncertainty for HBχPT result, and they can in prin-
ciple be easily improved in a perturbative treatment of the
pion–muon mass difference.

So far we have been discussing the O(p3) result. At higher
orders one in addition to the VVCS calculation needs to con-
sider the appropriate operators from the effective lepton–
nucleon Lagrangian with corresponding low-energy con-
stants fixed to, e.g., the low-energy lepton–nucleon scatter-

Footnote 1 continued
come from the expansion of the leading pion loop contribution to the
term βM1 Q2 in powers of mπ and hence are part of δβ in that reference.

ing. Birse and McGovern [13] computed the VVCS ampli-
tude T1(0, Q2) to order O(p4), but they evaded the consider-
ation of the lepton–nucleon terms by introducing a “physical
cutoff” in Q. Hence, their resulting calculation of the subtrac-
tion term is strongly cutoff dependent and lies, strictly speak-
ing, outside the χPT framework; we refer to it as “HBχPT-
inspired” calculation.

5 “Effectiveness” of HBχPT vs. BχPT

Although at high enough orders HBχPT and BχPT are
bound to yield the same results, at low orders this is not
necessarily so and practice shows that especially at ‘predic-
tive’ orders, where there are no free low-energy constants
to absorb the differences, HBχPT and BχPT results differ
substantially, sometimes even in the sign of the total effect
(cf. the order p3 result for the magnetic polarizability of the
nucleon [24,26]). The proton polarizability contribution to
the Lamb shift is apparently such a case as well. So, hav-
ing found the substantial differences between the HBχPT
and BχPT predictions the obvious question is: which one is
more reliable, if any?

A rather common point of view is that, since HBχPT
neglects only the effects of “higher order”, any substantial
disagreement only signals the importance of higher-order
effects and hence neither of the calculations should be trusted
at this order. On the other hand, it is plausible that not all the
higher-order effects are large, but only the ones present in
the BχPT calculation and dismissed in the one of HBχPT.
In support of the latter scenario is the physical principle
of analyticity—consequence of (micro-)causality, which in
BχPT is obeyed exactly, while in HBχPT it is obeyed only
approximately, albeit improvable order by order.

Another, perhaps more quantitative criterion is the one put
forward by Strikman and Weiss [32]. In the interpretation of
Ref. [24], it requires that the high-momentum contribution
of finite (renormalized) loop integrals over quantities which
are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calcula-
tion. In other words, the contribution from beyond the scales
at which the effective theory is applicable should not exceed
a natural estimate of missing higher-order effects.

In our case the VVCS amplitudes are such quantities
invariant under redefinitions of pion and nucleon fields and
hence it makes sense to examine Fig. 4, where the polariz-
ability effect is plotted as a function of the ultraviolet cutoff
Qmax imposed on the momentum integration in (12).

The figure clearly shows that the relative size of the high-
momentum contribution in the HBχPT case is substantially
larger than in BχPT.

Assuming the breakdown scale for χPT is of order of the
ρ-meson mass, mρ = 777 MeV, we can make a more quanti-
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Table 1 Summary of available calculations of the ‘subtraction’ (second row), ‘inelastic’ (third row), and their sum—polarizability (last row) effects
on the 2S level of µH. The last column represents the χPT predictions obtained in this work; here the omitted effect of the "(1232)-resonance
excitation is missing in the first two (‘subtraction’ and ‘inelastic’) numbers, but it does not affect the total polarizability contribution where it is to
cancel out

(µeV) Pachucki [9] Martynenko [10] Nevado and
Pineda [11]

Carlson and
Vanderhaeghen [12]

Birse and
McGovern [13]

Gorchtein
et al. [14]

LO-BχPT
[this work]

"E (subt)
2S 1.8 2.3 – 5.3 (1.9) 4.2 (1.0) −2.3 (4.6)a −3.0

"E (inel)
2S −13.9 −13.8 – −12.7 (5) −12.7 (5)b −13.0 (6) −5.2

"E (pol)
2S −12 (2) −11.5 −18.5 −7.4 (2.4) −8.5 (1.1) −15.3 (5.6) −8.2(+1.2

−2.5)

a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the ‘elastic’ and ‘polarizability’ contributions
b Taken from Ref. [12]

values appear to be very different from the empirical values
due to neglect of the "(1232) excitation, the polarizability
contribution is not affected by this neglect.

The details of our calculation and main results are pre-
sented in the following section. Remarks on the role of the
"(1232) excitation are given in Sect. 3. The heavy-baryon
expansion of our results is discussed in Sect. 4. An “effective-
ness” criterion is applied to the HBχPT and BχPT results in
Sect. 5. The conclusions are given in Sect. 6. Expressions for
the LO χPT forward doubly virtual proton Compton scat-
tering (VVCS) amplitude and pion electroproduction cross
sections are given in Appendices A and B, respectively.

2 Outline of the calculation and results

We begin with the leading order chiral Lagrangian for the
pion and nucleon fields, as well as the minimally coupled
photons; see e.g. [16]. After a chiral rotation of the nucleon
field the Lagrangian resembles that of the chiral soliton
model; see [26] for details. As the result, the pseudovec-
tor π N N interaction transforms into the pseudoscalar one,
while a new scalar–isoscalar ππ N N interaction is generated.
The original and the redefined pion–nucleon Lagrangians,
expanded up to the second order in the pion field, take the
form

L(1)
π N = N

(
i /∂ − MN + gA

2 fπ
τ a /∂ πaγ5

− 1
4 f 2

π

τ aεabcπb /∂ πc
)

N + O(π3), (1a)

L′(1)
π N = N

(
i /∂ − MN − i

gA

fπ
MN τ aπaγ5

+ g2
A

2 f 2
π

MN π2 + (g2
A − 1)

4 f 2
π

τ aεabcπb /∂ πc

)

N + O(π3),

(1b)

where N (x) and MN is the nucleon field and mass, respec-
tively, πa(x) is the pion field; gA ≃ 1.27, fπ ≃ 92.4 MeV.

Upon the minimal inclusion of the electromagnetic field,
the two Lagrangians give identical results for the O(p3)

Compton scattering amplitude and the isovector term pro-
portional to (g2

A − 1) does not contribute. Working with the
second Lagrangian, however, simplifies a lot the evaluation
of the two-loop graphs needed for the Lamb-shift calcula-
tion. The resulting Feynman diagrams, omitting crossed and
time-reversed ones, are shown in Fig. 1.

These graphs represent an O(α2
em) correction to the

Coulomb potential and can be treated in stationary pertur-
bation theory. Since the Coulomb wave function is O(α

3/2
em ),

the first-order contribution of these graphs to the energy shift
is O(α5

em) as requested. As any energy transfer in the atomic
system brings in extra powers of αem, we neglect it, and hence
consider strictly the zero-energy forward kinematics. In this
case the Feynman amplitude M is a number in momentum
space, corresponding to a potential equal to M δ(r⃗). Because
of the δ-function only the S-levels are shifted:

"EnS = φ2
n M, (2)

where φ2
n = m3

r α
3
em/(πn3) is the hydrogen wave function at

the origin, for mr = mℓ Mp/(mℓ + Mp) the reduced mass
of the lepton–proton system, and mℓ, Mp = MN the corre-
sponding masses of the constituents.

It is customary for the 2γ contributions to be split into
leptonic and hadronic parts, i.e.,

M = e2

2mℓ

∫
d4q

i(2π)4

1
q4 Lµν(ℓ, q) T µν(P, q), (3)

where e2 = 4παem is the lepton charge squared, and

Lµν = 1
1
4 q4 − (ℓ · q)2

[q2ℓµℓν − (qµℓν + qνℓµ) ℓ · q

+gµν(ℓ · q)2] (4)

is the leptonic tensor, with ℓ and q the 4-momenta of the
lepton and the photons, respectively; gµν = diag(1,−1,−1,

−1) is the Minkowski metric tensor. The tensor T µν is the
unpolarized VVCS amplitude, which can be written in terms
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2S shift

2S HFS

Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.

25 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org418
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Proton radius puzzle: possible explanations

 ΔELS$=$209.9779$(49)$.$5.2262$$RE2$+$0.00913$$R3(2)$$meV$

different     radii     

Lamb shift 

difference of      

310 ± 2 μeV     

μH expt. wrong ?  

μH theory wrong ?       

- soft hadronic corrections   

- missed QED or EW corrections     

eH theory wrong ?  

eH expt. wrong ? -> R∞ wrong  
 + ep scattering wrong:   

- 2γ corrections     
- low Q2 extrapolation     

Beyond Standard Model     
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FIG. 13. Longitudinal-transverse spin polarizabilities, �LT (Q
2), for

the proton and neutron as a function of Q2. For the blue band, the red
dashed line, and the black dotted line the legend is the same as in Fig. 7.
The blue dotted and orange dot-dashed lines are the O(p3) and O(p4)
calculations of Ref. [6], while the red band is the IR result of [35].
On the other hand, the grey band is the covariant BChPT calculation
including the �(1232) of Ref. [3]. The experimental points of �nLT are
from Ref. [28].
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ability. Blue dashed line: ⇡-cloud contribution, Green dot-dashed line:
�-pole contribution, Orange dotted line: ⇡� loops contribution, Red
solid line: Total.
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Breaking through frontiers

!4

Freeman Dyson on 16 discoveries awarded the 
Nobel Prize between 1945 and 2008: 

“four discoveries on the energy frontier, four on 
the rarity frontier, eight on the accuracy frontier. 
Only a quarter of the discoveries were made on 
the energy frontier, while half of them were made 
on the accuracy frontier. For making important 
discoveries, high accuracy was more useful than 
high energy.”  

(Freeman Dyson, review of The Lightness of Being, F. Wilczek, 
The New York Review of Books, April 2009) 
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Lamb shift in terms of VVCS amplitudes
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In our calculation the Born part was separated by subtracting the on-shell �NN pion loop
vertex in the one-particle-reducible VVCS graphs, see diagrams (b) and (c) in Fig. 1. Focus-
ing on the O(p3) corrections (i.e., VVCS amplitude corresponding to the graphs in Fig. 1) we
have explicitly verified that the resulting NB amplitudes satisfy the dispersive sum rules [24]:

T (NB)

1

(⌫2, Q2) = T (NB)

1

(0, Q2) +
⌫2

2⇡2

Z 1

⌫0

d⌫ 0�T (⌫ 0, Q2)

⌫ 02 � ⌫2

, (11a)

T (NB)

2

(⌫2, Q2) =
1

2⇡2

Z 1

⌫0

d⌫ 0 ⌫ 0 2Q2

⌫ 02 +Q2

�T (⌫ 0, Q2) + �L(⌫ 0, Q2)

⌫ 02 � ⌫2

, (11b)

with ⌫
0

= m⇡ + (m2

⇡ + Q2)/(2Mp) the pion-production threshold, m⇡ the pion mass, and
�T (L) the tree-level cross section of pion production o↵ the proton induced by transverse
(longitudinal) virtual photons, cf. Appendix B. We hence establish that one needs to calcu-
late the ‘elastic’ contribution from the Born part of the amplitudes and the ‘polarizability’
contribution from the non-Born part, in accordance with the procedure advocated by Birse
and McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (7) we obtain the following value for the
polarizability correction:

�E(pol)

2S = �8.16 µeV. (12)

This is quite di↵erent from the corresponding HB�PT result for this e↵ect obtained by
Nevado and Pineda [11]:

�E(pol)

2S (LO-HB�PT) = �18.45 µeV. (13)

Before discussing possible reasons for this di↵erence, let us note that a much simpler formu-
lae can be obtained if we make the low-energy expansion (LEX) of the VVCS amplitude,
assuming that the photon energy in the atomic system is small compared to all other scales.

To leading order in LEX, we may neglect the ⌫ dependence in the numerator of
Eq. (7) and, after Wick-rotating q to Euclidean hyperspherical coordinates [i.e., setting
⌫ = iQ cos�, ~q = (Q sin� sin ✓ cos', Q sin� sin ✓ sin', Q sin� cos ✓)] and angular integra-
tions, we find the following expression:

�E(pol)

nS = �4↵em�
2

n

Z 1

0

dQ

Q2

w
�
Q2/4m2

`

� h
T (NB)

2

(0, Q2)� T (NB)

1

(0, Q2)
i
, (14)

with the weighting function w(⌧`) shown in Fig. 2 and given by:

w(⌧`) =
p
1 + ⌧` �p

⌧`, ⌧` =
Q2

4m2

`

. (15)

Plugging in the LO B�PT expressions from Appendix A we obtain:

�E(pol)

2S = �8.20 µeV, (16)

i.e., nearly the same as before the LEX, cf. Eq. (12). This comparison shows that the LEX
is applicable in this case, at least within the B�PT framework. In HB�PT it is not clear
whether the low-energy and heavy-baryon limits commute. By taking the heavy-baryon
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FIG. 2: Plot of the Q2 behavior of the weighting function depending on the lepton mass. The blue
dashed line is for the case of the electron, w(⌧e), whereas the solid purple line is for the muon,
w(⌧µ).
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1

and T (NB)

2

as shown in Appendix A, we first of all reproduced the O(p3) result

of Birse and McGovern for T (NB)

1

[13], and secondly found that the T (NB)

2

term in the integral
of Eq. (14) fails to converge. Therefore, the after-LEX LO-HB�PT diverges, while the result
before LEX is finite [Eq. (13)], albeit significantly larger in the absolute value than that of
B�PT. It would be interesting to see how much of that finite result comes from Q > 1 GeV.
We suspect that due to these convergence issues the contribution from higher Q regions
to the result in Eq. (13) would be too large to satisfy the ‘e↵ectiveness’ (or, ‘naturalness’)
criterion which states that the high-momentum contribution of finite (renormalized) loop
integrals over quantities which are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calculation [23, 25]. We have checked
that the B�PT calculation does satisfy this criterion. The contribution from momenta above
1 GeV is less than 10%, which is well within the uncertainty of such calculation.

Regarding the uncertainty estimate, we first observe that for low Q the VVCS amplitudes
go as,

T (NB)

1

(0, Q2) ' Q2�M1

(17a)

T (NB)

2

(0, Q2) ' Q2(↵E1

+ �M1

), (17b)

where ↵E1

and �M1

are the electric and magnetic dipole polarizabilities of the proton. Given
the shape of the weighting function plotted in Fig. 2, the main contribution to the integral
in Eq. (14) comes from low Q’s, and hence �M1

cancels out. The dominant polarizability
e↵ect in the Lamb shift comes from the electric polarizability ↵E1

. The B�PT physics of
↵E1

is such that to obtain the empirical number of about 11 (in units of 10�4 fm3): 7 comes
from LO (⇡N loops) and 4 from NLO (⇡N loops) [22], with uncertainty of about ±1 from
the O(p4) low-energy constant. Since in the present calculation we include only the LO
⇡N loops, we expect our value to increase in magnitude when going to the next order (i.e.,
including the ⇡� loops). Therefore, to the usual uncertainty of 15% (' m⇡/GeV ) due
the higher-order e↵ects, we add an uncertainty of 30% [' (M

�

� Mp)/GeV] towards the
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integrals over quantities which are invariant under redefinitions of hadron fields should not
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NB stands for non-Born, i.e. w/o elastic FFs

empirically known 
‘inelastic’

unknown ‘subtraction’
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Baryon ChPT
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E (GeV)

1

0.1 

0.3

4⇡f⇡

MN

m⇢

m⇡

M� �MN

The 1st nucleon excitation — Delta(1232) is within reach 
of chiral perturbation theory (293 MeV excitation energy is 
a light scale) 

Include into the chiral effective Lagrangian as explicit dof 

Power-counting for Delta contributions (SSE,  ``delta-
counting”) depends on what chiral order is assigned to the 
excitation scale. 

pion cloud + Delta(1232) excitation
Jenkins & Manohar, PLB (1991) 
Hemmert, Holstein, Kambor, JPhysG (1998) 
V.P. & Phillips, PRC (2003) Δ (1232) M1/E2
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UV dependence in HB- vs B-ChPT
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor

MN ⇠ m3
⇡

 ⇠ m⇡

�M ⇠ 1

m⇡

Heavy-Baryon expansion fails for quantities where
the leading chiral-loop effects scales with a negative 
power of pion mass

E.g.: the effective range parameters of the NN force
are such quantities -- hope for “perturbative pions” (KSW)
in BChPT
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New Mainz data for Compton beam asymmetry
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Beam asymmetry Σ
3
 : Preliminary results

17

Eγ = 120 -140 MeV

Very Preliminary!

Curves: N. Krupina, V. Pascalutsa  [PRL 110, 262001 (2013)]

V. Sokhoyan, E. Downie et al. 
[A2 Coll.]

Data taken:  28.05. – 17.06.2013, 327 h

first data on this 
observable below pion 
production threshold! 

better precision needed!!
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Predictions of HBChPT vs BChPT
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HBChPT@LO
Bernard, Keiser, Meissner 

Int J Mod Phys(1995)

Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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Effective theory of the !„1232… resonance in Compton scattering off the nucleon
Vladimir Pascalutsa* and Daniel R. Phillips†

Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
!Received 4 December 2002; published 7 May 2003"

We formulate a new power-counting scheme for a chiral effective-field theory of nucleons, pions, and #s.
This extends chiral perturbation theory into the #-resonance region. We calculate nucleon Compton scattering
up to next-to-leading order in this theory. The resultant description of existing $p cross-section data is very
good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent
polarizabilities %p and &p .

DOI: 10.1103/PhysRevC.67.055202 PACS number!s": 14.20.Dh, 12.39.Fe, 13.60.Fz, 25.20.Dc

I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent

*Email address: vlad@phy.ohiou.edu
†Email address: phillips@phy.ohiou.edu

1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
speaking, leading-order predictions for %p and &p , but we refer to
them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.
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HBChPT@NLO: 

The Delta contribution is 
accompanied by “promoted” LECs, 
hence not predictive

Griesshammer & Hemmert (2004) 
Griesshammer, McGovern, Phillips (2012)

Lattice QCD data expected soon


