The observation of deeply bound pionic states of xenon produced in the Xe_{nat} (d, $^3He)Xe_{\pi-bound}$ reaction

M.Andersson¹, Chr.Bargholtz¹, B.Chernyshev², L.Gerén¹, M.Gornov², V.Grebenev², Y.Gurov², B.Höistad³, V.Sandukovsky⁴, R. Shafigullin², P.-E.Tegnér¹, K.Wilhelmsen Rolander¹,

- 1 Stockholm University, SE-106 91, Stockholm, Sweden
- 2 Moscow Engineering Physics Institute, Kashirskoe sh.31, RU-115409, Moscow, Russia
- 3 Uppsala University, Box 535, SE-751 21, Uppsala, Sweden
- 4 Joint Institute for Nuclear Research, Joliot-Curie street, RU-141980, Dubna, Russia

The observation of a clear peak structure corresponding to the 2p state of pionic atoms of 207 Pb and 205 Pb produced in (d, 3 He) reactions at an energy of $E_{\rm d}$ =600MeV [1,2] confirmed the theoretical prediction of the existence of deeply bound pionic states in heavy nuclei [3]. At the same time these experiments confirmed that the 2p state is populated preferentially in the case of a lead target in contrast to the 1s state, which is suppressed by the lack of s-state neutrons in the outer shell. The closed shell nucleus 136 Xe is suggested by Umemoto et al. [4], to be a particularly good candidate as a target for observation of the deeply bound 1s state in the (d, 3 He) reaction.

Here we report on a pilot study of the production of pionic atoms of xenon in (d, 3 He) reactions at E_d =500 MeV, using natural xenon as a target. The experiment was done at the CELSIUS storage ring [5] using a zero-degree spectrometer [6] with internal high-purity germanium detectors. The expected energy resolution of the spectrometer was \leq 1.2 MeV in the measured energy range of 3 He ions.

The measured ³He spectrum from $Xe_{nat}(d^3He)X$ reaction is shown in Two peaks are observed approximately 362 and 364 MeV. The peak positions are in a good agreement with those expected following the population of the 1s state in odd A and even A isotopes of xenon, respectively (fig1.b). Thus we conclude that the production of deeply bound pionic states in the mixture of xenon isotopes has been observed in the $Xe_{nat}(d, {}^{3}He)X$ reaction. An experiment on the $^{136}\,\text{Xe}(\text{d,}^3\text{He})^{135}\,\text{Xe}_{\pi\text{-bound}}$ reaction is being prepared with an isotopically enriched target. Based on the present results such an experiment offers very good perspectives for a precise determination of the binding energy and the width of the 1s state.

References

- [1] T.Yamazaki et al., Z.Phys. A355, 219, (1996)
- [2] H.Geissel et al., Nucl. Phys. A663&664, 206 (2000)
- [3] H. Toki and T. Yamazaki, Phys. Lett. B 213, 129 (1988)
- [4] Y.Umemoto, S.Hirenzaki, K.Kume and H.Toki, Theor. Phys. 103, 337(2000)
- [5] C. Ekström et al., Phys. Scr. T22, 256 (1988)
- [6] Chr.Bargholtz et al., Nucl.Instr. and Meth. A390, 160, (1997)