Angular Distribution of IMFs Produced in 8-12 GeV Proton and Light Heavy-Ion Induced Target Multifragmentation Reactions

T. Murakami,^a, Y. Hirai,^a M. Itoh,^a T. Kawabata,^a R. Kubohara,^b K. Miyazaki,^a J. Murata,^c S. Ota,^a E. Takada,^d H. Takeda,^a K.H. Tanaka,^e Y. Tanaka,^f Y.J. Tanaka,^a S. Terashima,^a M. Uchida,^a and Y. Yasuda^a

^a Department of Physics, Kyoto University, Kyoto 606-8502, Japan

^b Faculty of Science and Engineering, Science University of Tokyo, Chiba 278-8510, Japan

^cRIKEN, Wako, Saitama 351-0198, Japan

^dNational Institute for Radiological Science, Chiba 263-8555, Japan

^eInstitute of Particle and Nuclear Studies (KEK), Tsukuba 305-0801, Japan

^fNagasaki Institute for Applied Science, Nagasaki 851-0193, Japan

While the reaction dynamics of a relativistic heavy-ion collision is generally considered to be governed by an intra-nuclear cascade, there is some indication that the reaction mechanism of a target multifragmentation (TMF) is dictated by the total beam energy rather than by the beam energy per nucleon [1]. The appearance of sideward peaking in the intermediate-mass fragment (IMF) angular distributions at the total incident energy of approximately 10 GeV or higher is one of the most distinct evidence [2]. In order to search for a possible scaling rule in the TMFs, we initiated a series of experiments on the TMF by using GeV-energy light heavy-ion beams from the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences. We used the same large acceptance Bragg Curve Counter [3] array which had been adopted for the survey of the 8-GeV and 12-GeV proton induced TMFs [4].

Inclusive IMF energy-spectra for 8-GeV ¹⁶O and 8-GeV and 12-GeV ²⁰Ne induced TMFs show usual Maxwell- Boltzmann shapes similar to the ones for the proton induced TMFs, but their absolute cross sections are about 4-5 times larger. It was found that the single moving source (SMS) model always underestimates their yields at sideward angles, especially for heavier ($Z \ge 10$) IMFs. By taking ratios between the measured yields and those predicted by the SMS model we could see clear peaks at around 110° in the laboratory system for these TMFs. Though this angle is a bit backward compared to the 70° for the proton induced TMFs [5], the common appearance of the sideward peaks in both light heavy-ion and proton induced TMFs at the similar TOTAL beam energy suggests that the total beam energy plays a decisive role, i.e. acts as a common scaling parameter, to govern a reaction dynamics for the IMF emission in TMFs.

At the conference we will present details of the experiments and results of the further analysis.

References

- [1] W. Trautmann et al., Z. Phys. A **344** (1993) 447.
- [2] J.B. Cumming, P.E. Haustein, and R.W. Stoenner, Phys. Rev. C 33 (1986) 926.
- [3] H. Ochiishi et al., Nucl. Instr. and Methods A369 (1996) 269.
- [4] J. Murata et al., Nucl. Phys. A654 (1999) 807c.
- [5] J. Murata, PhD thesis, Kyoto University, 1999.