Nuclear Mass Number Dependence of Inclusive ω and ϕ Meson Production in 12.9 GeV/c p-A Collisions

T. Tabaru^a, M. Ishino^b, S. Yokkaichi^a, J. Chiba^c, H. En'yo^a, H. Funahashi^d, H. Hamagaki^e, M. Ieiri^c, H. Kanda^f, M. Kitaguchi^d, S. Mihara^{1d}, T. Miyashita^{2d}, T. Murakami^d, R. Muto^d, M. Naruki^d, M. Nomachi^{3c}, K. Ozawa^e, F. Sakuma^d, O. Sasaki^c, H. D.Sato^d, M. Sekimoto^c, K. H.Tanaka^c, S. Yamada^d and Y. Yoshimura^{4d}

^a RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

^b ICEPP, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

^c KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

^d Department of Physics, Kyoto University, Kyoto 606-8502, Japan

^e CNS, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

^f Physics, Science, Tohoku University, Sendai 980-8578, Japan

Recently, the phenomenon, partial restoration of chiral symmetry at finite density, has attracted considerable attention. Our experiment, KEK-PS E325, was designed to study it via modification of vector meson mass in nuclei. The spectrometer was designed to collect slowly moving mesons from 12.9 GeV/c p-A collisions. It had its acceptance for ϕ (ω) meson around -0.3 (-0.1) for Feynman's $x (x_{\rm F})$ and around 0.9 GeV/c (0.2 GeV/c) for transverse momentum $(p_{\rm T})$. For the analysis of such chiral phenomena, it is important to understand the production mechanism of vector mesons and interactions between hadrons in nuclei. We used JAM [1], a microscopic simulation program for nuclear collisions, for the purpose. We compared the calculation of JAM with our data of ω and ϕ mesons at the viewpoints of the production cross section and the kinetic distributions. Except for the production cross section of ω meson, JAM reproduced the distributions of our data well. It also gave consistent result with the data on mass number dependence α , with which production cross section $\sigma(A)$ is parameterised as $\sigma(A) = \sigma_0 A^{\alpha}$ for nucleus A. We obtained $\alpha = 1.01 \pm 0.09$ for ϕ meson and 0.87 ± 0.08 for ω meson, while JAM predicted 1.08 ± 0.01 and 0.79 ± 0.01 respectively. The values of α for differential cross sections in JAM had the same tendency of dependence on $x_{\rm F}$ and $p_{\rm T}$ as our data. With increase in $x_{\rm F}$, α became smaller, but it did not depend on $p_{\rm T}$ in our kinetic region. We will discuss the production mechanism of vector mesons suggested by measured α s.

References

[1] Y.Nara et al., Phys. Rev. C 61 (1999) 024901.

¹Present Address: ICEPP, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

²Present Address: Fujitsu Corporation, 4-1-1 Kamikodanaka, Nakahara, Kawasaki, Kanagawa 211-8588, Japan

³Present Address: Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

⁴Present Address: Xaxon Corporation, 1-3-19 Tanimachi, Chu-ou, Osaka, Japan