Properties of excited baryons in a deformed oscillator quark model

Miho KOMA(TAKAYAMA)

Atsushi HOSAKA

Hiroshi TOKI

(RCNP, Osaka Univ. Japan)

- Contents

Systematics in the masses of excited baryons Deformed Oscillator Quark Model (DOQ)

Intra-band transitions

Summary

Systematics in the mass spectra

- Observed mass spectra [PDG (2000)]

Gell-Mann-Okubo Mass Formula

Ground states $m_N = m_0 + 3m_u$ $m_{\Sigma} = m_0 + 2m_u + m_s$ $m_{\Lambda} = m_0 + 2m_u + m_s$ $m_{\Xi} = m_0 + 2m_s + m_u$

Consitituent Quark Model

- Consitituent Quark model

Baryon → three quark system quark → m ~ 300 MeV , Spin, Flavor, and Color degrees of freedom

$$|(Baryon)\rangle = |(Orbit)\rangle|(Spin)\rangle|(Flavor)\rangle|(Color)\rangle$$

The wave functions must be **Totally anti-symmetric**; change overall sign under every single interchange of any quark pair.

For the ground state ----

Orbit - Symmetric Color - Anti-symmetirc

Spin 1/2 (2) Mixed symmetric 3/2 (4) Symmetric

Flavor (8) Mixed symmetric (10) Symmetric (1) Anti-symmetirc Symmetry of the product of two wave functions S * S --- SA * A --- SS * A --- AS * MS --- MSA * MS --- MSMS * MS --- S, A, MS

²⁸ and ⁴¹⁰ are allowed

Ground states are assigned to ...

²8 ---- Ν, Λ, Σ(1189), Ξ(1317)
⁴10 --- Δ, Σ(1385), Ξ(1530), Ω

Naming Scheme for Baryons				
	Strangeness			
Isospin	S = 0	S = -1	S = -2	S = -3
I = 0	-	Λ	-	Ω
I = 1/2	N	-	[1]	-
I = 1	-	Σ	-	-
I = 3/2	Δ	-	-	-

They are the ground states of each Spin-Flavor Multiplet

Measure the Masses of Excited Baryons from these Ground States

- After classification ...

Positive Parity

- After classification ...

Remarkable Systematics!

- 1. First Excited States --- 500 MeV
- 2. Second Excited States --- 700 MeV, Degeneracy of Spin States

- Nucleon spectra -- Excitation energy --

Analogy to Energy Spectrum of Deformed Nuclei

Are Excited Baryons Spatially Deformed ?

Deformed Oscillator Quark Model (DOQ)

- Hamiltonian

$$H_{DOQ} = \sum_{i=1}^{3} \left(\frac{\mathbf{P}_{i}^{2}}{2m} + \frac{1}{2} m (\omega_{x}^{2} x_{i}^{2} + \omega_{y}^{2} y_{i}^{2} + \omega_{z}^{2} z_{i}^{2}) \right) - H_{c.m.}$$

Murthy et al., PR**D30** ('84) 152 Hosaka et al., MPLA **13** ('98) 1699

$$E_{int} = (N_x + 1)\omega_x + (N_y + 1)\omega_y + (N_z + 1)\omega_z$$
$$N_x = n_{\rho_x} + n_{\lambda_x}$$

- Intrinsic state

- Axial symmetry (for N = $N_x + N_y + N_z = 0,1,2$) --> $N_x = N_y$
- Energy Minimization (Volume Conservation Condition)

$$\frac{\partial E}{\partial \omega_x} = 0 \quad \frac{\partial E}{\partial \omega_z} = 0 \quad \Leftarrow \quad \omega_x \omega_y \omega_z = \omega^3 = \text{ const.}$$

 \mathcal{I} : Morment of Inertia (Cranking Model)

 $\langle L^2 \rangle$:Expectation Value of L^2

Moment of Inertia and the expectation value of L^2 can be obtained as a function of N, ω .

Energy of each state is written in units of $\boldsymbol{\omega}$

ω is our only one parameter!

- Comparison ----Data v.s. DOQ----

★All existing data with 3 or 4 stars — and some with 1 or 2 stars — are shown.

- Comparison ---Data v.s. DOQ---

(Takayama et al., PTP **101**('99)

★All existing data with 3 or 4 stars — and some with 1 or 2 of

some with 1 or 2 stars — are shown.

Summary

•We have studied systematically all existing data of flavor SU(3) baryons in the scheme of the DOQ.

Numbers of States

Almost all states fall into the DOQ systematics.

	(*** , ****)	(* , **)
known baryons	50	31
DOQ	49	13

Single Parameter! $\omega = 644 MeV$

There is a very simple, flavor independent systematics in the masses of flavor SU(3) baryons.

The structure of the spectrum can be described as rotational bands of deformed excited state.

For further study ...

Is there any effect of deformation in the transition properties?

It is difficult to observe Intra-band transitions with a photon

-- Transitions with a pion

Intra-Band transitions in the DOQ Model

We calculate the decay width of $N^{*'} \rightarrow N^{*}\pi$ with DOQ wave functions and Non-relativistic $\pi q q$ interaction Hamiltonian

Decay Width:
$$W_{f,i} = 2\pi \delta(E_{P_f} + \omega_k - E_{P_i}) \left| \mathcal{M} \right|^2$$
Transition Amplitude: $\mathcal{M} = \langle P_f; J_f, M_f | H | P_i; J_i, M_i \rangle$

Momentum, spin and its z component: $P_{i(f)}; J_{i(f)}, M_{i(f)}$ Energy and momentum of emitted pion: \vec{k}, ω_k

Integrate (Average) over...

Spin z-component of Initial and final states Momentum and charge of emitted pion

$$W = 6\pi \int \frac{d^3k}{(2\pi)^3} \delta(E_{P_f} + \omega_k - E_{P_i}) \frac{1}{2J_i + 1} \sum_{M_i, M_j} |\mathcal{M}|^2$$

Non-relativistic $\pi q q$ interaction Hamiltonian $\mathcal{M} = \langle P_f; J_f, M_f | H | P_i; J_i, M_i \rangle$ $\rightarrow 3 \int \Psi^*(P_f; J_f, M_f) H_{\pi q q} \Psi(P_i; J_i, M_i)$

DOQ wave function

Permutation symmetry of quarks in the baryons

$$H_{\pi q q} = -rac{g}{2m} rac{1}{\sqrt{2\omega_{m k}}} \left(ec{\sigma} \cdot ec{
abla} \exp(iec{k} \cdot ec{x})
ight)$$

DOQ wave function --- Angular momentum projection ---

1) Intrinsic wave functions obtained by the variation are deformed.

2) Introduce the Eular angle $\Theta = (\alpha, \beta, \gamma)$ which connect the body-fixed frame and the Lab-frame.

Wave function can be written as a product of intrinsic wave function and collective motion.

$$D^L_{0L_z}(ec{\Theta})\langle\{ec{x}\}|N^{(int)}
angle
angle\sim$$

Transition amplitudes

1) Separate the contibution from the deformed intrinsic state and the collective motion

$$\mathcal{M} = \int d\Theta \langle [L_f, 1/2]_{M_f}^{J_f} | 3\mathcal{O}_N^{int}(\Theta) | [L_i, 1/2]_{M_i}^{J_i} \rangle$$

2) Integration over the body-fixed coordinate = Operator in the collective coordinate

$$\begin{split} \mathcal{O}_{N}^{int}(\Theta) &\equiv \int d\{\vec{x}_{i}\} \langle N^{(int)} | \{\vec{x}_{i}\} \rangle \langle \{\vec{x}_{i}\} | \hat{R}^{\dagger}(\Theta) H_{\pi q q} \hat{R}(\Theta) | \{\vec{x}_{i}\} \rangle \langle \{\vec{x}_{i}\} | N^{(int)} \rangle \\ \mathcal{O}_{N}^{int}(\Theta, \vec{k}) &= -\frac{(4\pi)^{3/2}g}{2m\sqrt{2\omega_{k}}} \sum_{l,m} i^{l} k Y_{lm}^{*}(\hat{k}) \\ &\times \left[\sqrt{\frac{l+1}{(2l+1)(2l+3)}} \left[Y_{l+1}\sigma \right]_{m}^{l} Q_{N}^{(l+1)}(k) + \sqrt{\frac{l}{(2l+1)(2l-1)}} \left[Y_{l-1}\sigma \right]_{m}^{l} Q_{N}^{(l-1)}(k) \right] \right] \\ &l - \text{moment:} \qquad Q_{N}^{(l)}(k) \equiv \langle N^{(int)} | j_{l}(kx) Y_{l0}(\hat{x}) | N^{(int)} \rangle \end{split}$$

The *l*-moment contain all information of the deformed intrinsic states.

3) Integrate over the collective coordinate

$$\mathcal{M} = \frac{3(4\pi)g}{2m\sqrt{2\omega_k}} \sum_{l,m} i^l k Y_{lm}^*(\hat{k})(-)^m \begin{pmatrix} J_f & l & J_i \\ -M_f & m & M_i \end{pmatrix} \frac{\hat{J}_f \hat{J}_i(-1)^{J_f + L_f + 1/2}}{\hat{l}} \\ \times \begin{pmatrix} J_i & J_f & l \\ 1/2 & -1/2 & 0 \end{pmatrix} \left[\frac{(L_i - J_i)(2J_i + 1) + (L_f - J_f)(2J_f + 1) + l + 1}{\hat{l} + 1} Q_N^{(l+1)}(k) + \frac{(L_i - J_i)(2J_i + 1) + (L_f - J_f)(2J_f + 1) - l}{\hat{l} - 1} Q_N^{(l-1)}(k) \right]$$

4) Substitute into the decay width (Integral over the momentum of π)

$$W = rac{27g^2}{2m^2} ilde{k} \sum_{l} \left| F_{l;L_iJ_iL_fJ_f}^{(N)}(ilde{k})
ight|^2 \qquad \left(ilde{k} = \sqrt{(E_i - E_f)^2 - m_\pi^2}
ight)^2$$

$$F_{l;L_iJ_iL_fJ_f}^{(N)}(k) \equiv i^l k \frac{\hat{J}_f(-1)^{J_f+L_f+1/2}}{(2l+1)} \begin{pmatrix} J_i & J_f & l \\ 1/2 & -1/2 & 0 \end{pmatrix}$$
(Geometrical factor)

$$\times \left[\frac{(L_i - J_i)(2J_i + 1) + (L_f - J_f)(2J_f + 1) + l + 1}{\hat{l+1}} Q_N^{(l+1)}(k) + \frac{(L_i - J_i)(2J_i + 1) + (L_f - J_f)(2J_f + 1) - l}{\hat{l-1}} Q_N^{(l-1)}(k) \right]$$

Selection rule for N=2, Positive parity band

Decay Width

			provide the second seco	
$L = 4 \rightarrow 2$	$9/2 \rightarrow 5/2$	$9/2 \rightarrow 3/2$	$7/2 \rightarrow 5/2$	$7/2 \rightarrow 3/2$
$\Gamma({ m MeV})$	18.9	35.3	115	0.5
$L = 2 \to 0$	$5/2 \rightarrow 1/2$	-	$3/2 \rightarrow 1/2$	-
$\Gamma({ m MeV})$	0.2	-	0.5	-

 $L = 2 \rightarrow 0$ transitions are almost forbidden

7/2 → 5/2 transition has large decay width (a pion with l = 1 can contribute in this channel)

Long wave length limit $\tilde{k} \rightarrow 0$

Compare $7/2 \rightarrow 5/2$, $3/2 \rightarrow 1/2$ transitions

Contribution of l = 1 pion is dominant for both $97a^2$ (I = 1.1 ()

$$W = \frac{219}{2m^2} \tilde{k} \left(\tilde{k}^2 \frac{L-1}{2L-1} \frac{1}{5} (Q_N^{(2)}(\tilde{k}))^2 \right) \sim \tilde{k}^7$$

Transitions with low momentum transfer are strongly suppressed.

Ratio of the width is determined only by geometrical factor with the same momentum transfer \tilde{k}

$$\frac{W(L+2 \to L)}{W(L \to L-2)} = \frac{(L-3)(2L-1)}{(2L-3)(L-1)}$$

(Alaga rule for Baryons)

l-th moment

Dashed line -- long wave length limit

l-th moment

To compare with the data... Experimentally, Intra-band transitions may be observed in the $N^* \rightarrow N\pi\pi$ process

However, $L = 2 \rightarrow L = 0$ transitions, where some $N^* \rightarrow N\pi\pi$ processes are observed, are almost forbidden.

There is no analysis with the decay into $N\pi\pi$ for L = 4 baryons. Moreover, J = 7/2 baryon is not identified yet.

(due to the large decay width from intra-band transitions?!) N(2220) DECAY MODES (J = 2/9)

The following branching fractions are our estimates, not fits or averag

	Mode	Fraction (Γ_i/Γ)
Γ1	Νπ	10-20 %
Γ ₂	Nη	
۲ ₃	ΛΚ	

(Takayama et al., PTP **101**('99)

\star All existing data with 3 or 4 stars — and

some with 1 or 2 stars — are shown.

Summary and Future Plan

Mass spectrum of flavor SU(3) baryons **Deformation!**

- Systematics for all flavor multiplets
- Rotational bands formed by deformed excited states

Is there any signs of the deformation in various transitions?

- Inter-band transitions

- Intra-band transitions

We have calculated the decay widths of intra-band transitions with pions in the DOQ model

Transitions from J = 5/2, 3/2 -- forbidden

Transitions from J = 7/2 -- Large decay width

Next, we will calculate

- Negative parity band
- Inter-band transitions with pions
- Decay into Δ (1232) π

= the decay width of $N^* \rightarrow N\pi\pi$ process in the DOQ model

Angular momentum of π l = 1, 3(Parity conservation)