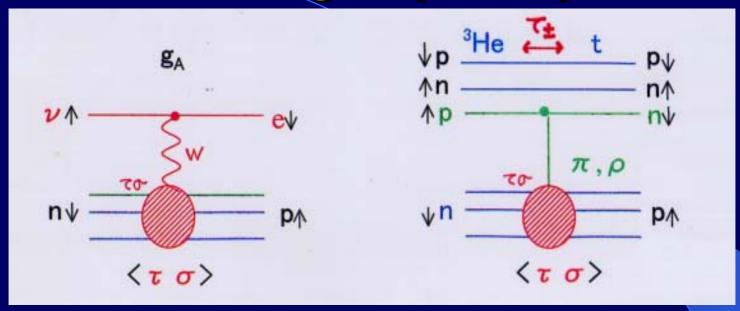
III. Nuclear Probes for Neutrino Nuclear Responses

Nuclei as micro-laboratories.

- Nuclei are quantum systems of nucleons with good quantum numbers of $J^{\pi}T$ E.
- Used for studies of fundamental properties
- of elementary interactions and fundamental
- Interactions.
- Nuclei are chosen so as to select particular
- signals/processes of interest and reject other events/processes.


Hadron probes

1. Charged current spin responses by charge exchange spin flip reactions.

2. Neutral ones by inelastic reactions, but both isovector and isoscalar components.

3. Non-central interactions, distortions, multi step processes and others.

Chare exchange spin flip reactions

(d,²He), (³He,t), (t.³He), (⁷Li.⁷Be), (¹¹B, ¹¹Li).

• E/A ~ 0.2 GeV Large $V_{\tau\sigma_i}$ and small distortion, preferential $\tau\sigma$ excitation.

• High E resolution($\Delta E < 50 \text{ keV}$) for solar ν , and $I = 0 \sim 3$ for $\beta\beta$ and supernova ν

EM probes

• e, γ, and high Z Coulomb excitation

- Neutral current and includes T = 0,1, and magnetic s and l contributions.
- Stretched transitions with J = J'+L, J'-L.

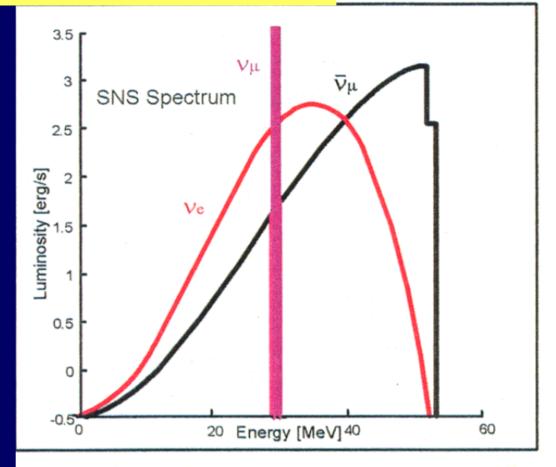
$$\begin{split} \langle T_{\gamma}(\mathrm{M}J) \rangle &= \left(g_{\gamma \mathrm{p}}(\mathrm{M}L) \frac{1-\tau_3}{2} + g_{\gamma \mathrm{n}}(\mathrm{M}L) \frac{1+\tau_3}{2} \right) \langle \mathrm{i}^{J-1} [Y_{J-1} \times \boldsymbol{\sigma}]_J \rangle, \\ g_{\gamma \mathrm{p}}(\mathrm{M}L) &= \frac{e\hbar}{2MC} \left(J(2J+1) \right)^{1/2} \left(\mu_{\mathrm{p}} - \frac{1}{J+1} g_{\ell \mathrm{p}} \right), \\ g_{\gamma \mathrm{n}}(\mathrm{M}L) &= \frac{e\hbar}{2MC} \left(J(2J+1) \right)^{1/2} \left(\mu_{\mathrm{n}} - \frac{1}{J+1} g_{\ell \mathrm{n}} \right), \end{split}$$

Weak probes/processes

- 1. v beams, direct way but need intense v beams of
- 10¹⁵/sec and large detectors(10 tons) because of
- $\sigma \sim 10^{-41-42} \, \text{cm}^2$

	Souse	E GeV	$\mathbf{N_p}$	$N_{ m v}$	Detector
•	SNS	1	$6\ 10^{15}$	7 1014	ORLaND
	JHF	3	1.2 10 ¹⁵	$3\ 10^{14}$	(MOON)

- 2. μ^- by (μ, ν_μ) captures for T_+ up to 100 MeV
 - with very large cross sections


$\begin{array}{c} \text{Neutrinos} \\ \text{from} \\ \text{stopped } \pi^{\text{+}} \end{array}$

$$p + Hg \rightarrow n \pi^{+}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \underline{\nu}_{\underline{\mu}}$$

Neutrino spectra

Intense ($\sim 10^{15}/\text{sec}$) v's with 1 MW p, time structures and v spectra in the E region of the astro nuclear particle physics interest.

References

Nuclear responses for neutrinos.

Review H.Ejiri, Phys. Rep. 338 (2000) 265. GR and $\beta\beta$, solar & sn v's H.Ejiri, Nucl. Phys. A 687 (2001) 350c LI reactions. ³He H.Akimune, H.Ejiri, et al. PLB 394 (1997) 23. ¹¹B, ¹¹Li H. Ejiri, K. Takahisa, et al., 1997, 2001.

Double beta decays and neutrinos.

ββ EL V H.Ejiri, N.Kudomi, et al., Phys. Rev. C 63 (2001) 65501 Review H.Ejiri, Nucl. Phys.B 91 (2001) 255, v2000 proc

MOON

ββ and solar ν H.Ejiri, J.Engel, G.Hazama, P.Krastev, N.Kudomi, R.G.H.Robertson, Phys, Rev. Lett.,85 (2000) 2917
Supernova ν H.Ejiri, J.Engel, N.Kudomi,

PL B 2002, arXiv:astro-ph/0112379 v2

IV. Concluding remarks

Concluding remarks

- 1. Neutrinos are new windows for new physics.
- 2. Nuclear τ σ responses for ν are crucial for ν studies in nuclei.
- RCNP is expected to promote ν nuclear physics by LI(hadron), photon and lepton probes as well as the ν studies at Oto Cosmo (underground) Observatory.

http://www.rcnp.osaka-u.ac.jp/~ejiri 100 papers

1. Hadron probes at cyclotron lab.

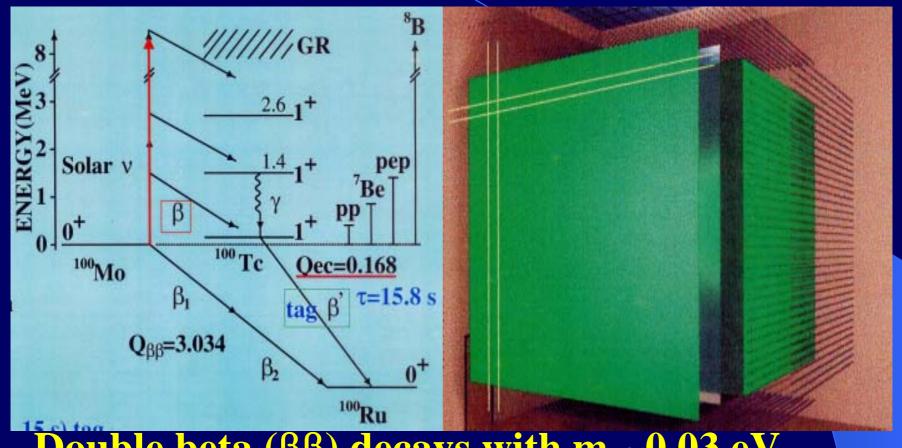
• Nuclear responses for ν 's are studied by τ and σ mode hadron reactions with medium energy(E/A~0.2-0.2GeV) LI.

- High resolution studies with t,d,He, Li, and B
- $\tau_i \sigma^S Y_{\lambda}$ with I=3,+,-, S=0,1, λ =0~3.

Decay branches of γ,p,n

EM probes at LEPS

- Mediun energy (sub. GeV) LEPS for
- Neutral current interactions.

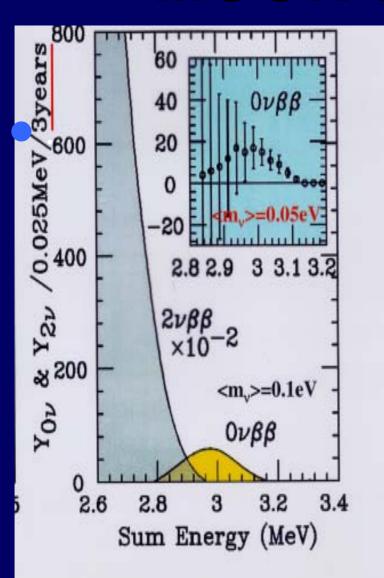

Weak probes of ν and μ

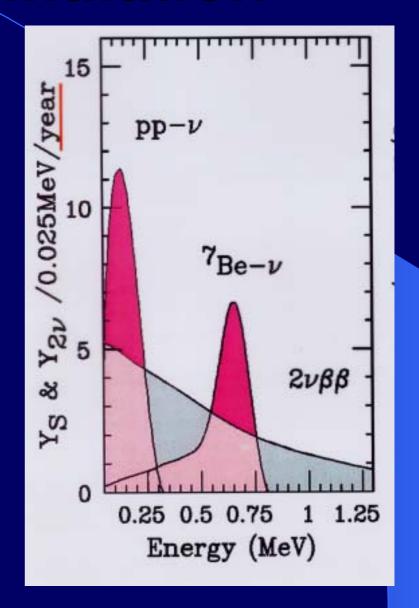
• 1. One possible direct probe is the low energy(0.1 GeV) v sources from 3 GeV ring at JAERI/Tokai, combined with large v detectors ORLaND and MOON.

• 2. μ beams from RCNP ring and JAERI

MOON (Mo Observatory Of Neutrinos)

Two β ray Spectroscopy from ¹⁰⁰Mo

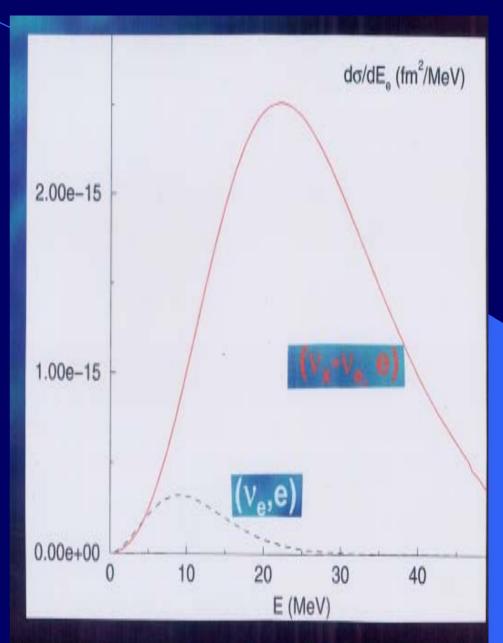



Double beta ($\beta\beta$) decays with m_v~0.03 eV.

Low E solar and supernova ν by inverse β & β'

http://npl.washington.edu/moon/index.html

MOON simulation



MOON for Supernova v_e , v_{xe}

- 1.Large response for CC by large GT
- 2. Energy spectra of ν by measuring E_e
- 3. Sensitive to low energy v_e and v_x - v_e oscillation.
- 4.Scaled up MOON with

 1 K ton natural Mo
 plates

Welcome to

MOON collaboration

for ββ, solar and supernova ν studies in Mo

Thank you for attention