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Principle of OPPIS
applied for Polarization of 3He

Step I : Production of 3He2* Ton

Step I1 : Polarized Electron transfer

- > I e2+
from Kb to SHe* [on UR————:

Step III : Conversion of Electron Polarization
to Nuclear Polarization
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Photon Spectrum of He |
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Transversal Emittance growth
due to the fringing field
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Failure of OPPIS

In contrast with the success of
the proton OPPIS, the ‘He
OPPIS was unsuccessful in the
following points:

1) Large depolarization
due to insufficient LS
decoupling field,

2) Emittance growth
due to charge changing
collision in the magnetic
field.




We must look for

an avenue to an innovative
method how to produce *He
beam with

1) fully polarized,
2) no sizable beam emittance
growth

This is a second step of our
development.

EPPIS

(Electron Pumping Polarized Ion Source)




Charge Exchange Collisions
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To understand the
strange phenomenon

Thin Alkali vapor
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Characteristic of EPPIS

1) Generalized concept of the optical pumping
Open up a new field as a powerful tool
for the nuclear spectroscopy for which
the pumping laser light is not available.

2) No need for powerful ion source which provides
JHel+ ions

3} No beam emittance growth

because of no charge changing collisions

Prerequisite conditions

imposed for EPPIS

1) Production of highly polarized dense alkali
vapor homogenously distributed throughout
the Rb cell.

An areal polarization distribution was
investigated by the time differential
measurement.

2) Evaluation of the Spin-exchange cross section.
This term helps the EPPIS create an

additional polarization.
: = SEPLS (Spin-exchange)
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Results obtained for EPPIS
1) *He nuclear polarization ~7 %
(Rb polarization ~20% )

2) “He* beam intensitly ~ 2 WA
(Primary beam ~ 100 pA)
Problems associated with EPPIS using
high density polarized Rb vapor

Smallness of the nuclear polariation attainable is
caused by

1) Small Rb polanzation due to

a) Absorption of pumping laser
b) Radiation trapping effect

2) Non uniform distribution of the Rb vapor in the
Rb vapor cell due to

a) Effusion
b) Polarization sheath formed by radiation

trapping
How Lo overcome above difficulties

1) Development of high Rb polarization

2) Spin-exchange polarized ion source (SEPIS)
which uses a highly polarized Rb vapor with
a low density.




A way to obtain highly polarized Rb vapor
homogeneously distributed in the cell

: unormity of the Kb polanzation
dL['!tI‘IElH on the relaxation mechanism occuring

in the vapor cell.
For this purpose, the Rb relaxation times were
measured by observing the polarization time-

differentially with chopped laser lights.
Changing parameters:
1) the external magnetic field
2) the cell temperature

3) the pumping laser frequency

were -.Lumpured mth I:he uh'ﬂsn ed le.ldmltli‘.ﬁ to
discuss the relaxation mechanisms.

As a result, the relaxatton mechamsm 15 found
to mainly be determined by

1) Wall relaxation
2) Effusion

3) Radiation trapping

This finally gave insight into how to realize
uniform distribution of the Rb polarization.
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B, T, and v, dependences of decay

constants for fast and slow components

—_— ) ‘ Sﬂ' —_

s %in a5 = BRNEEES 551
e lfiﬂ‘ & 3
B S 40| f% S

oy RS

i T | LD i is :._h"'. _ — b I-.-.‘t‘-'r {GHz)

—
i 'k
[ |

Tg(ms")

| 1 . i
it . |':|'5 B ' .'I_ 4 .Ell .':"I';-:. i"'=|:- g
! - o 1 1 o
La i | & d




Temperature dependence of the fast component
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Beam emittance growth really
suppressed in the ?

To investigate this point, behavior of SHe ions
colliding with polarized/unpolarized Rb gas under
a strong magnetic field has been studied by means
of the Monte Carlo ssmulation method.

€ Study with unpolarized gas:
A new concept of

4 Study with polarized gas:.
A new concept of
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Polarized Rb gas

Process I: Without charge exchange
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(Spin-exchange polarized ion sour ce)

Thision source was invented to
overcomethedifficulitiesin EPPIS



Principle of SEPIS
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Spin-exchange process
between
3Het and Rb

Initial Pseudo-Molecule Final

©-00 -0

Bl =

SHe* lon SHe' Ton

Estimation of the spin-
.exchange cross section

1) Formation of the pseudo-molecule
2) The semiclassical impact parameter

method
() Transitions: Quantum mechanics

) lon trajectories: Classical orbits




Quantum Mechanical Principle of
ectron spin-exchange
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Spin-exchange cross sections for He-Rb
and H-RDb systems
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A simple model could not reproduce the smallness
of the spin exchange cr oss sections.

What istheorigin of thisfailure?

Asymptotic limit
—3He* (15 °S)+Rb(5s %5)
—IHe(1s52s '°S)+Rb”

—3He(152p P)+Rb™
—3He*(1s 28)+Rb(5p 2P)




® Experimental __ for "He*-Rb
o Experimental o_, for H-Rb
—— Theoretical o for *He® - Rb including transition
- — — Theoretical o,, for “He* - Rb not including transition
Theoretical o for H - Rb not including transition
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Observed anomaly of the spin-exchange cross
sections was qualitatively reproduced by taking
thetarget excitations and target ionizations.



Expected Performance for the polarized
JHe ion source based on electron pumping
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Summary and future direction

We have developed a polarized YHe ion source,

The OPPIS offers a very convenient method to simply polanze nuclei
as far as we don't say an amount of the polanzation degree. Let me
show, for example, the polarization of 14N recently observed by
Shimoda.

The EPPIS is an extended concept of the optical pumping invented by
Prof. Kastler. We hope in future there would be versatile applications

in the held of science

Further technical progress is necded for its full performance
particularly in realizing high alkali polarization uniformly distributed.

I'he SEPIS is one of the most convenient methods to '|1]'|'l||l||.'|.' a ﬁiil_‘r
polarized “He beam without further development
Aunother important aspect imposed for the polarnzed 1on sources 1s
a beam inlensily
In fact, Ramsey said that
Intensity 1s evervthing.
For this purpose, we have examined carctully beam emittances and

theoretically predicted a strange effect named polanzation hole which
will be useful in future,

Roma non uno die aedifficata est.




Beam emittance growth really
suppressed in the EPPI S?

For this purpose, Behavior of 3He ions colliding
with polarized/unpolarized gas under a strong
magnetic field has not well bee investigated by
means of the Monte Carlo simulation method.

1. Study with unpolarized gas.

Come up to concept of
effective magnetic field

2. Study with polarized gas:

Come up to concept of
polarization hole




How to realize highly polarized
Rb vapor uniformly distributed

An areal uniformity of the Rb polarization
depends on the relaxation mechanism occuring
in the vapor cell.

For this purpose, the Rb relaxation times were
measured by observing the polarization time-
differentially with chopped laser lights.

Changing parameters:
1) the external magnetic field
2) the cell temperature

3) the pumping laser frequency

A simple model and Monte Carlo simulation
were compared with the observed quantities to

discuss the relaxation mechanisms.
As aresult, the relaxation mechanism is found
to mainly be determined by

1) Wall relaxation
2) Effusion

3) Radiation trapping

Thisfinally gaveinsight into how to realize
uniform distribution of the Rb polarization.
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