Impulse Picture of (d,p) Reactions

Tomohiro Uesaka, Saitama University

- **1.** Intermediate energy (d,p) reactions
 - 2. Impulse approx. for the ³He(d,p)⁴He reaction
 - 3. Comparison with 0degree observables
 - 4. Discussion
 - **5.** Summary

Introduction

Transfer reactions at low energies $(d,p), (p,d), (d,^{3}\text{He}) \dots$

provide information on single-particle state. J^{π} assignment spectroscopic factor...

— Distorted Wave Born Approx.

To intermediate and high energies Larger momentum mismatch probing higher momentum component in nuclei

Failure of DWBA?

Δ excitation in the intermediate channel

b) Rescattering

A.Boudard et al., Phys. Rev. Lett. 46 (1981) 218.

Relativistic Effect

a) Stripping

E.Rost et al., Phys. Rev. Lett. 49 (1982) 448.

Isobar Exchange

A.K.Kerman and L.S.Kisslinger, Phys. Rev. **180** (1969) 1483.

³He(*d*,*p*)⁴He Reaction

Probe to the D-state admixture in deuteron

T. Uesaka et al., Phys. Lett B 467 (1999) 199.

Strong spin-dependence in the n-capture process by ³He

Spin correlation is less sensitive to ³He and ⁴He structures

DWBA calculations fail to reproduce polarization observables $f_{fi} = \langle \Phi_f \vec{k}' | \underline{V_{pn}} | \Phi_i \vec{k} \rangle$? $V_{pn} + V_{p^3 \text{He}} - U_{p^4 \text{He}}$

$^{3}\text{He}(d,p)^{4}\text{He} @E_{d} = 270\text{MeV}$

Motivation to IA

H.Kamada et al., Prog. Theor. Phys. **104** (2000) 703.

IA for the (d,p) Reactions

³He(*d*,*p*)⁴He Reaction

$$T_{
u_p;
u_h
u_d} = \sum\limits_{(N, ilde{d})} \langle \Psi^{ec{d}, d'}(K_lpha) | au^{dN}_{
u_p
u_{d'};
u_N
u_d}(E_{dN}) | \Psi^{ec{d}, N}_{
u_h}(K_h) arphi_{
u_d}
angle$$

Elementary process : Wave functions of ³He, ⁴He:

d+N backward scatteringdNGreen's function Monte Carlo

J.L.Forest et al., Phys. Rev. C 54 (1996) 646.

Fermi motion in Target

Integration for momentum of participant nucleon

- *K* Internal momentum in ⁴He
- E_{dN} dN center-of-mass energy

3N Amplitude

Faddeev solution

H.Kamada et al., Prog. Theor. Phys. 104 (2000) 703.

One-nucleon exchange approximation

 $egin{aligned} & au_{
u_p
u_{d'};
u_N
u_d}(E_{dN}) \ = \ ilde{t} \langle \Psi_{d'}|\chi_{
u_N}\chi_{
u_p}|arphi_{
u_d}
angle \ & = \ ilde{t} \sum\limits_{
u_n} \langle \Psi_{d'}|\chi_{
u_n}\chi_{
u_N}
angle \langle \chi_{
u_n}\chi_{
u_p}|arphi_{
u_d}
angle \end{aligned}$

Vector Analyzing Power Absolute Value of Cross Section

Deuteron Inclusive Breakup

B. Kuehn et al.,Phys. Lett. B 334 (1994) 298.

Cross Section

Absolute value is arbitrarily normalized.

Summary

A model of (*d*,*p*) reactions alternative (?) to DWBA Impulse Approximation

> Reproduces energy dependence of polarization observables for the ${}^{3}\text{He}(d,p){}^{4}\text{He}$ reaction at E_{d} =140 270MeV

Theoretical basis?

large momentum transfer large energy (or momentum) dependence in elementary amplitudes.

Future development introduce Faddeev amplitudes introduce distorted wave

absolute value of $d\sigma/d\Omega$ vector analyzing power