GEMチェンバーにおける 電荷の拡がりの測定

登壇者 門松 宏治 (佐賀大)

(KEK) 池野正弘 宇野彰二 氏家宣彦 内田智久 関本美智子 田中秀治 田中真伸 仲吉一男 村上武
(佐賀大) 杉山晃 山本拓也
(大阪市大) 中野英一
(林栄) 近野和夫

Introduction

- 電荷の拡がりを知ることは、測定器の設計する上で 重要である。
- GEMの構造により拡がりはどうなるのか
 - ギャップの違いによる電荷分布
 - Triple GEM vs. Double GEM
- 電場を変えることにより拡がりはどうなるか
 - Transferの電場を変える

Readout strip

ゆ日・35ランド管

読み出しストリップ ストリップ間隔: 200 µ m : 100 µ m 幅 - ギャップ :100 µ m - 長さ : 50mm - ストリップ総数=64本

P10 Triple GEM

 $g_{D} = 4mm$ $g_{T1} = 2mm$ $g_{T2} = 2mm$ $g_{I} = 1mm$

Ch i-4 Ch i (トリガー) Ch i+4

トリガーと信号の関係

Foilからの信号 (スタート信号) ストリップ からの信号 トリガー

One Event Display

1イベントで得られた各stripの電荷量

最も高い電荷量を得たstripを 中心に±5個のstripを使う

合計11個のstripで ヒット点を求める。

C.O.Gの求め方

・Max ± 5のstripに対して、信号位置の重心(C.O.G)

(ADCi x Yi)

ADCi

ADCi:各stripのADC Yi:各stripの中心位置

C.O.G =

左のようにADCが測定されたもの として 上の式より、 C.O.G = $\frac{1 \times 1 + 2 \times 3 + 3 \times 5 + 4 \times 1}{1 + 3 + 5 + 1}$ = 2.6 この例のeventのC.O.G(重心)は 2.6 となる

拡がリ測定結果

Triple GEM $g_D, g_{T1}, g_{T2}, g_I=1.5, 1, 1, 1mm$

Charge distribution

 σ for a gauss fit in a charge distribution

Unit : mm

	GEM structure	Total gap	P10	Ar-CO ₂
Triple	$g_{\rm D}, g_{\rm T1}, g_{\rm T2}, g_{\rm I} = 4, 2, 2, 1$	7	0.465	
	$g_{D}, g_{T1}, g_{T2}, g_{I} = 1.5, 2, 2, 1$	5.75	0.417	0.207
	$g_{D}, g_{T1}, g_{T2}, g_{I} = 1.5, 1, 1, 2$	4.75	0.390	0.203
	$g_{\rm D}, g_{\rm T1}, g_{\rm T2}, g_{\rm I} = 1.5, 1, 1, 1$	3.75	0.343	0.181
Double	$g_{\rm D}, g_{\rm T1}, g_{\rm I} = 1.5, 2, 1$	3.75	0.340	0.173
	$g_D, g_{T1}, g_I = 1.5, 1, 1$	2.75		0.157

Total gap : $g_D/2 + (g_{T1} + g_{T2}) + g_I$

各パラメータの電場を変える Transfer領域に着目

測定data

MagBoltz data

MagBoltzを用いた、距離による計算

MagBoltz vs. 測定data

まとめ

• GEMチェンバーの電荷分布の測定をした。

- 拡がりはほぼ拡散に決まっている - GEMの構造によるものは小さい

- 今後
 - 各領域の距離をさらに狭くして、GEMの構造が 拡がりにどれくらい影響しているかを確かめる。

おわり

	電場(kV/cm)	測定 data(mm)	Magboltz(mm)
Ar-CO2	1.11	0.179	0.112
	1.48	0.170	0.122
	2.59	0.181	0.142
	2.95	0.185	0.145
	3.33	0.185	0.146
P10	0.66	0.368	0.358
	0.99	0.365	0.362
	1.65	0.360	0.348
	1.98	0.359	0.342
	2.97	0.350	0.329