

Present Status of GEM Detector Development at RCNP

at site with the

12 21008 20805 13800 18000 5600

Kunihiro Fujita RCNP, Osaka Univ.

Physics Motivation

- Physics goal
 - study short range correlation of the nuclear interaction \Rightarrow 1p exchange + 1r exchange + g'(short range)
 - Landau-Migdal parameters g' (g'_{NN}, g'_N, g'
 - D-hole residual interaction

own No information

- g'_{DD} extraction from Coherent Pion Production $p + A \rightarrow n + p^+ + A$ (ground state)
- Peak position of p coincidence spectrum : DE

~ sensitive to
$$g'_{DD}$$

•
$$\Delta E \approx g'_{DD}(hct_{pND}/m_p^2)\Gamma_0$$

Detector Requirement

- Motivation
 - Tracking of low energy (< few hundred MeV) charged particle
- Requirements (why GEM?)
 - high position and angle resolution
 - spatial : <100um & angle: < 2 mrad
 - rate capability : >100kcps
 - can be operated under high magnetic field: <0.5T

Detector specification

- To Get position information for Two layers
- Component
 - Cascade GEM structure ~ Three layers
 - Two dimensional Readout Board
 - Charge Information : Multi channel ADC

GEN

GEM

50

307.2

H.V.

• **CERN-GEM** (supplied by GDD group)

- Active Area: 307.2x50 mm
- Segmented by two area
 - protection from discharge
- Standard Material & Size
 - Cu-PI-Cu 5-50-5mm
 - hole 70mm, pitch 140mm

Readout Board and Connector

Readout Board

- Same size with GEM
- Base : G10 50mm
- Cu-PI-Cu : 5-25-5 mm
- Strip width
 - horizontal (x) : 80 mm
 - vertical (y) : 340 mm
- pitch: 400 mm

• Connection

- Flexible Cable
- Sandwiched Structure : GND-Signal-GND

Readout Electronics

- Analog
 - VA: amp, sample/hold, serialize
 - TA: self trigger (32ch OR)
 - Dynamic range : ~ 140 fC
 - 256ch outputs are multiplexed
- Digital
 - ADC: 12-bit
 - Serial Data Transfer (LVDS)
 - Sparse Data Scan : Skip un-triggered chip

• Data Transfer Rate ~ should be checked

Beam Test

- Experiment was performed in December 2005
- Beam:
 - particle: alpha
 - energy: $\sim 100 \text{MeV/A}$
 - rate : <1k count / sec</pre>
- Detector Setting
 - Gas : Ar/CO2 (7:3)
 - DVgem : ~ 410V (gain ~12k)
- 480ch readout was tested. (Total channel is 1776ch)

MWDC x 2

Scintillator x 2

Scattered Particle

DAQ PC

► blank area

Result (1) ~ tracking

hit_strip1

- Position information was observed in each layer.
- With two position information, position on focal plane is calculated.
- Problem
 - efficiency has position dependence

L1 > L2

- hit information has structure

• Beam profile is not flat?

FPC

• Is gain fluctuate by FPC length?

hit_strip2

Result (2) ~ charge collection

• Charge information

- Cluster size (cls)
 - ~ Nominal event has 5~15 cls
- ADC spectrum with different DV_{gem}
 - ~ Gain dependence is shown
- ADC had overflowed.
- Gain is large enough?

Next Plan

0

- Full setup
 - Test experiment ~ performance check more in detail
 - CPP experiment
- Low materialize
 - Reduce GEM layer : triple \rightarrow double
 - ~ need enough gain
 - Replace G10 (base of ROB) to PI
 - "Al" GEM ~ collaborate with M. Tanaka (KEK)

GEN

SUMMARY

- 02
- We developed GEM detector for nuclear experiment.
- Large size GEM is made.
- Two dimensional Readout Board is made.
- ADC data is acquired by serial data transfer system with VA chip.
- Beam test was performed, and position information was acquired successfully.

