

マイクロパターン検出器の開発と展望

RCNP研究会

RHIC PHENIXにおけるPIXEL検出器の開発

理化学研究所延與放射線研究室 小貫良行

PHENIX/VTX group

秋葉康之、浅井淳吉、延與秀人、藤原康平、後藤雄二、狩野博之 大西宏明、竹谷篤、東城順治、V. Rykov

Spin physics

Only 1/4 to 1/3 of the proton spin is carried by quarks.

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

Investigating nucleon spin structure by polarized proton-proton collider to utilize quark/gluon as probe, instead of lepton DIS.

QGP physics

QCD energy loss and Debye screening in QGP depends on flavor.

•Production cross section of quarkonium such as J/ ψ , ψ ' in QGP are suppressed via gluon dissociation.

 $\bullet R_{AA}$ measurement for open charm and bottom.

With tight displaced vertex cut
Separate c and b
Separate B J/ψ ee and prompt J/ψ
With loose vertex cut to reduce light meson decays
Reduces background in open charm measurements
Reduces combinatorial background in quarkonium
Improved momentum resolution
J/ψ and ψ' separation
Upsilon states separation

Heavy flavor identification Displaced vertex

Requirements for VTX

Physics side

- High precision tracking for displaced vertex measurement.
 40µm displaced vertex resolution, cτ =123µm(D⁰), 460µm(B⁰)
- Large coverage tracking capability with momentum resolution (|\eta|<1.2 , and full azimuthally with $\sigma/P\sim 5\%P)$

Environment side

- High charged particle density $dN/d\eta \sim 700 @\eta=0$ (Au-Au)
- High Radiation Dose ~100KRad@10Years
- High Luminosity 2 × 10³²cm⁻¹s⁻¹@pp Level 1 trigger rate ≤ 25 kHz @PHENIX-DAQ readout all data in ~ 40 µs
- Low Material Budget 1.2%/layer Avoiding for multiple scattering/γ conversion

PHENIX Detector

The Pioneering High Energy Nuclear Interaction eXperiment

Good particle ID
High resolution
High trigger rate
But not large acceptance

p, Au

VTX Detector

□ Barrel region

· $|\eta| < 1.2$, almost 2π in ϕ •Pixel sensor at inner 2 layers (r = 2.5, 5.0cm)

•Strip sensors at outer 2 layers (r = 10.0, 14.0cm)

□ Forward region

•1.2<| η |<2.7, 2p in ϕ

•4 layers of mini strip (50 x 2000 to 11000 μm) Trigger capable

•Trigger capable

Barrel in r-ø

10 "pixel-staves" in 1st layer

20 "pixel-staves" in 2nd layer

Total 30 pixel-staves

Hybrid type pixel sensor is adopted in PHENIX. RIKEN pixel group is assigned to manufacture all staves.

Expected Performance

Expected occupancy at Au-Au 200GeV most central event

Distance to the Closest Approach [cm] Au-Au central event

Components of pixel detector

A full stave is consisted of 2 Buses + 4 ladders + 1 support.

A half stave is electrically independent from the other.

Pixel sensor

- p-in-n type silicon sensor (5" wafer)
- Thickness of the sensor is 200 μm
- 32 x 256 (x 4) pixels (8192 x 4 pixels)
- Pixel size match with size of cell in r/o chip
 - (50 x 425 μm²)
- Active area : 12.8 x 13.6 mm²
- Sensor bias voltage ~ 50V

picture of a corner of a pixel detector sensor

Layout of a 5" silicon sensor wafer

IV curve of the test diode structure on ladder wafer

Readout chip

- 13.5 mm -

15.8

mm

• ALICE1/LHCB chip

- Chip size: 13.5mm x 15.8mm x 150 μ m
 - (Active area: 12.8mm x 13.6mm)
 - CMOS 0.25 µm (8" wafers)
- 8192 channels (32 x 256)
- 4-event buffer; 10 MHz clock
- radiation hard up to ~30 Mrad
- ~1W/chip

Threshold test for readout chip

Minimum Ionization Particle signal in 200 µm sensor ~ 14,000 e⁻

Bump bonding

- Readout chips are thinned down to 150 μm at VTT
- Interconnection with micro-soldering between pixel sensor and readout chips to be done by VTT/Finland

Source test

Readout bonding pad

4

Hit map with β-source test

2

Bus structure

- 5 layers structure
- GND, Power and 3 signal lines

Final planed

Signal-1 3 µm Cu

Signal-2 3 µm Cu

Signal-3 3 µm Cu

Power 50 µm Al

GND 50 µm Al

Signal 1; (for Surface Mount Device) Signal-1 and Signal-2

is connected with through hole

Signal 2; (Vertical line) line connected with pixel chip with wire bonding

Signal 3; (Horizontal line) send signal to Pilot Module connected with vertical line with through hole

Line spacing; 70 μm pitch Material Budget; Total ~ 0.12 %

Cu-Polyimide test bus and extender bus

Readout scheme

First half stave assembly

3cm Cu-Kapton Bus

Relative alignment btw. Ladders by 3D measuring machine (Borrowed from KEK-ATLAS)

Bonding machine owned by RIKEN

All assembly procedures are done by hand at Hayashi-Seimitsu Co. Visual Inspection of wire-bonding was done and there were no problem.

Summary and Plan

- The Silicon vertex tracker will be implemented into the PHENIX detector in 2009.
- R&D and Production are on going
 - Readout chip probing test
 - Ladder probing test
 - Development of readout bus
 - Development of readout system
 - Pixel stave assembly
- Second half stave will be assembled on Feb 6, 2006.
- First combined test with half stave and r/o system on Feb 15, 2006.
- Test beam on Spring 2006