東大CNSにおける GEM開発の現状

東大CNS、 ^A早稲田大学、^B東京理科大学 小沢恭一郎、 浜垣秀樹、梶原福太郎、郡司卓、 磯部忠昭、織田勧、森野雄平、 荒巻陽紀、山口頼人、佐野哲^A、真木祥千子^B

Outline & Man power

- GEM
- Gain (山口 M1)
- Ion feed back (真木 4年生)
- 電場計算 (佐野 4年生)
- 光検出器 (荒巻 M1)

CNS COE 2/10締め切り

CNSでのGEMの開発

GEM - ポリイミド(カプトン)の両面の銅電極 に電圧をかけ穴の中の電場で増幅

東大CNS+渕上ミクロ(株)で製作 プラズマ・エッチング

(d=50 µ m)

d=5 u m

20056/1/26

20056/1/26

GEMの 増幅率

・増幅率を測定

詳細は、 M.Inuzuka et.al. NIM A525,529

3層のGEMで十分な増幅

20056/1/26

MPGD研究会@RCNP, 小沢恭一郎(東大CNS)

Ar(90%)-CH₄(10%)

GEMの改良

・放電

- 銅が突き出している
- ・増幅率の変動
 - 2時間で30%増 - 部分的なCharge upか

エッチングプロセスの変更。

デスメア処理を行うことにより、穴の上に突出していた銅
 部分を除去。

などの改善をサイエナジーと進めた。

再度、増幅率を測定

20056/1/26

Ву 山口

一枚あたり、CERN製に比べて1.7倍の増幅率
立ち上がりの10時間程度では、1%以内の安定性

20056/1/26

さらに長期安定性

Ву 山口

160時間の テストで12% の安定性

強い圧力(p)/ 温度(T)相関

補正作業中

補正後には、数%の安定性

20056/1/26

Ion feed back

• GEMは、本当にIon feed backは、少ないのか?

20056/1/26

電流Ia, Ic - VGEM(Vd=100V,150V)

イオンフィードバック*F* - *VGEM* (*Vd*=100V,150V)

By 真木

電流*Ia*,*Ic*-ドリフト電場*Ed* (*VGEM*=350V,360V,375V)

By 真木

イオンフィードバックF - ドリフト電場Ed (*VGEM*=350V,360V,375V)

By 真木

CNS型の電位

Meshの様子 20056/1/26

CERN型の電位 MPGD研究会@RCNP, 小沢恭一郎(東大CNS)

CNS型の電場計算

By 佐野

- 計算は、1層だけ • GEM電圧: 340V - 実測増幅率: 1000@3層 - 1枚あたり10程度 • Drift電圧: 450V for 3mm - 実際より非常に高い - 高いion feed backを予想
 - 極端な計算になっている

20056/1/26

Drift & Avalanche

Garfieldを用いて計算 電子の出発点 イオン **F**7 0 - - -Avalancheの様子

Driftの様子

20056/1/26

電子の生成点

電子の消滅点

イオンの消滅点

電子の消滅点が、下の境界であるものの数は、約400000個。 Gain ~ 40 (400000/(100*100)) イオンの消滅点が、上の境界であるもの(Ion feedback) ~ 450000 個 Ion feedback (F) ~ 1.1 (450000/400000) (大きな値となった。) なぜ、1を越えるのかは、チェック中

20056/1/26

By 佐野

300Vから340Vまで電圧を変えて計算。
100個程度の種を作り最下部まで達した電子を数 えた。

Gainが実測より、4倍程度大きい。Drift fieldの高さによるTransportationの良さの 影響も考えられるが、Study中。実際と合わせた計算を準備中。 今後、計算を実測に合わせ、計算結果を参考にOperationをOptimizeする。

20056/1/26

Csl cathodeを用いた光検出器

- 紫外域に感度を持つ光検出器
- 読み出しにStripやPadを用いることで位置情報も得られる
- PHENIX実験では、Window lessのCherenkov検出器の 光検出部分として用いられる。
- ・具体的には、
 - GEM3層を増幅部に使用
 - 1層あたりの増幅率は低く安定な 動作
 - GEM上面にCsIを蒸着
 - Radiator ガスと増幅用のガスに CF4を用いた場合、50cmの Radiatorの長さで約40個のp.e.

References 1. NIM A523, 345, 2004 2. NIM A546, 466, 2005

20056/1/26

CSIを用いた光電面

3種類の光電子収集の方法

Reflective

Transmissive

Semitransparent

- Transmissiveを選択 - 比較的高い量子効率
 - 少ないphoton feedback

番上のGEMにCSIを蒸着して実現

CSIのGEMへの蒸着 GEMにニッケルと金をメッキし、CsIを蒸着

基本的な手順: 真空度: a few x 10-7 Torr GEMをマスクしCsIを事前に少し飛ばす ボートやCsI表面の不純物の除去 のため (高純度のCsIを使用しているが) GEMを少しあたためる 不純物や水分の除去のため Quartz で厚さをモニター 5%程度 2000A ないし 5000A程度の蒸着 ベッセル内で、密封

20056/1/26

装置は購入済み、稼動準備中

By 荒巻

GEM検出器

PMT

20056/1/26

Schemeを確立させる

PMT Signal

By 荒巻

	<u>F</u> ile	<u>E</u> dit	<u>V</u> ertical	H <u>o</u> riz/Acq	<u>T</u> rig	<u>D</u> isplay	<u>C</u> ursors	Mea <u>s</u> ure	<u>M</u> ath	<u>U</u> tilities	<u>H</u> elp
	Tek	Run	Sample					24 -	Jan 06 21	:16:42	Buttons
	 								0		Position
	·· ··· ·							=140	Unm		49.0
	 			:				Jailan kun manda sa			Scale
	a a n an a			Venter 1999 - 1999 -	مين مير اروني -		a ta baranta			1	20.0ns
	••										Mean(C1) 19.37mV
	··· ·										μ: 19.711754m
											RMS(01) 35.39mV
											, µ. 35.46 Юоэні
											Hits(Hs) 40.81Khits u: 36.377315K
	·· ··										
	Ch	1 20	0mV Ω			: : : UI : :	M 20.0 A Ch1	0ns 25.0GS/s ℃ -24.0m \	ET 40.0ps /	÷÷÷÷÷÷ ⊭/pt	
200	56/1	/26		MPGE	D研究:	会@RCN	NP. 小沢	恭一郎(す	夏大CN	S)	

Csl蒸着(Stony Brookの研究室の例)

Objective: To develop and test the technique of CsI evaporation at Stony Brook for production of CsI coated GEM foils for HBD prototypes and possibly even the final detector.

Method

- Use high purity CsI (Scintillator grade)
- High Vacuum (1E-7 Torr) [diffusion pump w/ N₂ trap]
- Thoroughly clean vessel and all components
- Bake the CsI
 - •Mask substrates
 - •Evaporate very small amount of CsI
 - This vaporizes any contaminants on molybdenum boat and/or outer surface of CsI crystals
 - Vessel walls coated with CsI will also act as a "getter"
- Warm up substrates before, during and after evaporation
 Withholds water and contaminants from condensing onto the substrates before deposition, and onto the CsI after deposition
- Thickness monitor
 - Quartz crystal oscillator, Al foil control substrate
- Transportation/ Storage of Photocathodes (vacuum, gas flow)

20056/1/26

Dimensions of Evaporator Vessel

理研(放射線研)との協力で同様なものを進めていく予定。

20056/1/26

Summary

- 東大CNSにおいて、GEMの開発が行われ、安定したゲインが得られている。
- Ion feedbackを測定した。GEM電圧とDrift電圧
 に対する顕著な依存性が見られた。
- Maxwellを用いた電場計算を行い、Garfieldを用いた検出器Simulationを行った。実測と比較すると、差が大きく、今後のStudyが必要である。

東大CNSのCSIを用いた光検出器は、まだ、成功していない。CsIのハンドリングなどに問題があったと考えられ、今後、段階的に開発を行う予定である。

20056/1/26

- さらに安定度の高いGEMの開発
 - Agingは?
 - 歩留まりは?
- 2次元ストリップ読み出し

 酒見さんや宇野さんの結果に期待しています。
- アルミニウムGEMの開発
- X線や中性子線の検出器の開発
- より大きなGEMの開発
- 高レートへ対応した検出器の開発