New Readout Method for 2-D MSGCs

- <u>P. Siritiprussamee^a</u>, H. Takahashi^a, K.Fujita^a, H. Niko^a, K. Nishi^a, M. Nakazawa^a, T. Ino^b, S. Kishimoto^b, and M. Furusaka^c
- ^a The University of Tokyo, ^b KEK, and
- ^c Hokkaido University

Overview

- Introduction
- Readout Method
 - Individual Readout Method
 - Charge Division Readout Method
 - Encoding Readout Method
 - Global-Local Grouping (G-LG) Readout Method

Introduction

- Multi-grid-type MSGC(M-MSGC) is being developed in Japan for neutron applications.
 - ♦ Large sensitive area @low cost
 - ➡ High counting rate, High detection efficiency and high spatial resolution → high pressure gas
 - The number of interconnections through a high pressure gas vessel is limited.
- New readout method dedicated for 2-D M-MSGC neutron counters is being developed.

•Discharge &low gas gain

1. Individual Readout Method

One amplify per readout line \rightarrow Many amplifiers Huge electronics Difficult to maintenance Spatial resolution ~Anode to Anode pitch \rightarrow noise do not effect to the resolution

Very high counting rate >10⁶cps

M-MSGC with pad-readout

Backside distribution

2. Charge Division Method

Cathode

$$\frac{X}{L} = \frac{Qa}{Qa+Qb}$$

Position of the event can be determined from the fraction of the charge reaching each end of the resistive network (chargedivision encoding)

≻Compact

□Slow

Resolution limited by S/n

Image distortion

NUMBER

2-D Charge **Division M-MSGC ÖUsing M-MSGC with PAD** Ö 95x95mm² of sensitive area Ö500um thickness ÖGas mixture: 3He (0.4 atm) + CF4 (5 atm) ÖBackside signal is 60% of anode signal Beam size 1mm •Gas gain of 25 •X-axis (Anode) ~ 1.6mm. •Y-axis (Backside) ~ 4.6mm.

Surface charge division M-MSGC

- Thick plate
- Low cost
- Readout by Charge division method

Position resolution
 ~1.3mm.

3. Encoding readout method

Individual readout from each strip Signal
Processing \rightarrow with ASICs (small size & low noise)

Processed signals are encoded into a set of two pulses using a resistive line based on the charge division method

3. Encoding readout method

★Fast ~10⁶cps per strip

 Difficult for maintenance

- ★ High resolution
- ★Compact size

Individual-readout ASIC chip

•ROHM 0.35um CMOS

Shaping time 500ns

Scalable method

Position Identification

All 16 channels are successfully resolved as individual peaks.

FWHM Resolution of peaks corresponds to 1.05% Of the distance between neighboring peaks.

Thus, 16 * 100/1.05 ≅1500 pixels can be resolved. 4. Global-Local Grouping (GLG) Readout Method The principal of G-LG method is using global and local signals to locate the position :

Global information is used to define the coarse position

Local information is used to define the fine position in the coarse position

G-LG Method

High counting rate

High resolution ~Anode pitch → micro fabrication technology (~16lines/400um)

Compact → easy to maintenance

Good uniformity

Cost & High capacitance

Positions per readout line = $\frac{(Global \times Local)}{(Global + Local)}$

Presented by K. Fujita 26/1/2006

1-D GLG M-MSGC

- ◆ Position sensing → Geometrical Charge Division
- Periodical modulation on Local cathode.
- Using the same PAD size within global pitch

Presented by K. Fujita 26/1/2006

Conclusions

	Detection area	Resolution
Individual readout	Limited by the number of amplifiers	High (anode pitch)
Charge Division	Limited by expecting resolution	Limited by SNR
Encoding	Can be large	High
G-LG	Can be large	High (anode pitch)

Conclusions

	Counting rate	Image Distortion
Individual readout	High	
Charge Division	Low	Ο
Encoding	High	Ο
G-LG	High	

Conclusions

	Cost	Maintenance
Individual readout	Very high	Difficult
Charge Division	Low	Easy
Encoding	High	Difficult
G-LG	Reasonable	Not difficult