VERTEX2005 Conferenceの報告

KEK-IPNS 関本 美知子

VERTEX Conference とは…

- 第1回目のConferenceは、FinlandのBasto Islandで 1992年に開かれた。この時はCERNのDELPHIなど約3 つのプロジェクトに関して、誰でも(physicists, engineers, hardware, software...)参加し、フリップを 使用して(no power!)議論された。
- 以後、世界の「water front」を会議の場として選びながら、毎年開催されてきた。

(Slovenia, USA, Israel, Italy, Brazil, Greece, Netherlands, USA, Switzerland, Hawaii, UK, Italy)

VERTEX2005は第14回にあたり、Asiaでは初めて日本の日光中善寺湖畔で開催された。

Basto vs Nikko

Vertex 1992

A few detailed talks – physics, electronics.. Many questions and discussions No summary or proceedings

Sauna & cold sea

<u>Vertex 2005</u>

Many talks – review + details Some questions & discussions Summary

Bath & cold wind

The VERTEX Series is International Workshop on Vertex Detectors

Emphasis is usually given to topics directly related to vertex detectors:

- Vertex detectors at present experiments
- New vertex detector projects
- R&D for future vertex detectors
- Radiation hardness of detectors and R&D on new materials
- Radiation hardness of integrated readout electronics
- DAQ and trigger architecture for vertex detectors
- Vertexing algorithms and performances
- Applications of vertexing instrumentation to other fields.

Additional talks usually available for new and innovative ideas and applications.

Local Organizing Committee: Chair; A. Miyamoto (KEK),
J. Haba (KEK), Y. Unno (KEK),
Y. Sugimoto (KEK)

- ・参加者:外国から35人、日本から15人
- 日程: 2005.11.7 9:00 ~ 11.11 12:00

Local Organizing Committee: A. Miyamoto (Chair), J. Haba, Y. Sugimoto, Y. Unno

Local Organizing Committee: A. Miyamoto (Chair), J. Haba, Y. Sugimoto, Y. Unno

- 参加者:外国から35人、日本から15人
- 日程&報告数: 2005.11.7 9:00 ~ 11.11 12:00 40件(各30分or20分)
- 報告された研究所&グループ、他分野:

KEK; BELLE, K2K(T2K)
CERN; ATLAS, CMS, LHCb, ALICE, DESY; ZEUS
FNAL; DO, CDF, SLAC; BaBar BNL; PHENIX
future projects; ILC, S-LHC, S-Bfactory
other fields; 医学、核融合、宇宙、放射光

何が報告されたか?

- 7 operating experiments
 - each with 1-3 Si technologies
 - Most with upgrade plans
- 11 projects under construction
- 20 RD efforts or specialised techniques
- 4 from other fields

from Tyndel's summary

- 1. Measure the first point precisely (1 or 2D) & with 'no' material
 - -- Material perturbs trajectories (mrad) $\sim 1.4*$ sqrt (tX0(%)/p(GeV))
- 2. Measure the angle precisely
 - -- Goal is that the multiple scattering in the beam pipe/first layer should dominate i.e. s ~ 1mrad
- 3. Measure the curvature
 - -- Precision ~ L2. Value is driven by physics (charge ID; mass resolution)
- 4. ...and cover a large solid angle
- In principle simple but in detail complicated (as we have heard)!

Silicon system performance

• I had thought to gather and compare performance figures.

Impossible & probably of no use. Much more fun (for me and you) to collate problems and ideas & try and learn lessons.

- ' Resolution rf z
- Granularity or cell size

Missing short strips/macro-pixels →

- FE Speed & noise
- Power/channel (1msec 25nsec)
- Material in X0
- Geometry and sImpact
- Efficiency

Typical values today

< 10mm

20x20mm² (CCD, APS, DF)

 $0.02 \text{ mm}^2 \text{ (pixels)}$

 $10.0 \text{ mm}^2 \text{ (strips)}$

25nsec, $S/N \sim 20$

1 ~ 5mW (strips LC-LHC)

0.1mW(pixels);

0.1 mW(CCDs)

1%(strips); **2%**(pixels)

< 20mm from beam; ~20mm

b-tags and some c-tag?

99%(build) – 85%(running)

Local Organizing Committee: A.Miyamoto(Chair), J.Haba, Y.Sugimoto, Y.Unno

- 詳しくは、<u>http://www-conf.kek.jp/vertex2005</u>
 のプログラムを参照してください。
- ・特に、M. Tyndel (RAL)のSummary によくまと められています。
- ・また、R. Yarema (Fermilab)がElectronicsの 立場からHEPの将来計画にむけてまとめられてい ます。

Wafer Thinning

- Detectors and readout chips make a significant contribution to multiple scattering
 - Every 100 μ of silicon is 0.1% X₀
 - Hybrid pixels have 2 layers of silicon, each greater than 100 μ thick
- Take advantage of work being done in industry by major companies (IBM, INTEL, Toshiba, etc.) to reduce wafer thickness
- Thinning
 - Thinning to 50 microns is in production
 - State of the art CMOS wafers thinned to 10-15 microns by lapping/grinding followed by wet or plasma etch and CMP. Thinner for SOI.
- Challenges
 - Handling/breakage
 - Thickness uniformity on large wafers
 - Circuit performance changes due to thinning
 - No change in Vt for 25u wafer (Fraunhofer, IZM)
 - · No change in Idsat for 25 u wafers (IZM)
 - More tests needed

November 7-11, 2005

Vertex 2005, Nikko, Japan

Thinned IC wafer (J. Joly, LETI)

Thinned 200 mm wafer transferred on to glass handle wafer (A.Young, IBM)

11

CMOS Feature Size Decrease

SVX Feature Size vs. Year

Mask Cost for CMOS Processes

November 7-11, 2005

Vertex 2005, Nikko, Japan

28

Challenges and the Future

- Technology tradeoffs must be made depending on the application.
- As a general rule good tools and experienced designers will reduce the number of design iterations saving development time and overall cost.
- · A few questions to think about
 - What is the proper balance between on chip regulation (higher power dissipation) with the potential reduction in cabling mass and power?
 - Will special design rules still be necessary at smaller CMOS features sizes, or at what level will the special design rules be necessary
 - Will wafer thinning and 3D circuits become practical for HEP
 - Can power ramping be made to work in future very large systems
 - · Readout stability
 - Thermal cycling
 - Pickup
 - Can analog information be given up to reduce system complexity and reduce power dissipation?
 - Can designs be tested in larger feature sizes to save development money
 - · Similar thing was done before with rad soft to rad hard design process.
- Many questions lots of work to be done
- · Start thinking now the future is just around the corner

November 7-11, 2005

Vertex 2005, Nikko, Japan

29

Local Organizing Committee: A.Miyamoto(Chair), J.Haba, Y.Sugimoto, Y.Unno

- 詳しくは、<u>http://www-conf.kek.jp/vertex2005</u>
 のプログラムを参照してください。
- ・ 特に、M. Tyndel (RAL)のSummaryがよくまとめられています。
- ・ また、R. Yarema (Fermilab)がElectronicsの立場から HEPの将来計画にむけてまとめられています。
- 「高エネルギーニュース」最新号(今月配布?)に、講演者とその簡単なトピックをまとめたものが報告されています。個々の講演を検索する参考にしてください。

検出器製作において参考になる

(関本が捉えた) keywords

- Radiation-hardness
- 11. Humidity
- III. Kapton Technology

I. Radiation-hardness

- Review all components for radiation hardness
 - Include all ASICs, opto-links, glues
- Build in radiation & beam loss monitors
 - There is a lot of energy in beams
 - Can cause physical damage
 - Results in damage to
 - Silicon (pinholes in Belle)
 - ASICs (many expts)
 - Power supplies (CDF)...
 - Diamonds are now available as BCMs

I. Radiation-hardness

- Belle: Luminosity (1.6×10³⁴cm⁻¹·s⁻²)×3 @ 2007 トリガー系のupdate
 - × 30 @ Super-B monolithic active pixel sensor continuous acquisition pixel (CAP)
- ATLAS: 集積 Luminosity ~ 3000 fb⁻¹ @ SLHC diamond pixel detector
- Czochralski silicon: 耐放射線の強いシリコン(結晶の成長方法による違い)
- and ···· of course, future big projects, not only HEP but also NP and others needs the new technologies for radiation-hardness

II. Humidity

- Surface charge: depend on humidity, temp
 Micron detectors in BarBar
- Leakage current: more humidity helps to stop the effect "Humidity plays a role"

Leakage Current Increase

Using humid air and a new reference voltage setting, the situation now is under control

II. Humidity

- Surface charge: depend on humidity, temp
 Micron detectors in BarBar
- Leakage current: more humidity helps to stop the effect "Humidity plays a role"
- Corrosion:

CMS discovery that Humidity reacts with Phosphorus (present in a 4% concentration into the passivation oxide) and forms an acid that corrodes Aluminum.

Corrosion on Silicon Sensors

A "How to Eat up Your Detector at the Very End!"

Günther Beuchle, Jean-Charles Fontaine, Martin Frey, Alexander Furgeri, <u>Frank Hartmann</u>, Manfred Krammer

The most terrible pictures

The mystery solved, ...

- Stains & dots need voltage, time, humidity
 - Yes, we all test under bias voltage!
 - The company tests only 4 min! → no stains & dots
 - Karlsruhe & Vienna test with low humidity
 - Strasbourg long term tests sensors from everywhere

BUT, what is it?

And is it dangerous?

この話題に関して興味のある方は、

http://www-conf.kek.jp/vertex2005

Wednesday 09 November 2005

Short Talks and FE Electronics

(09:00->11:50)

Chair: David Christian

(FNAL)

Room: Lakeside Hotel--Kaede

Corrosion of Silicon Sensors (20')

Frank Hartmann

B

(IEKP Karlsruhe, CERN)

を参照してください。

III. Kapton Technology

- ATLAS, CMS, GLAST all had problems with Kapton
- High density (70mm) Al pitch adaptors for PHENIX
- Fine pitch (100mm) tab-bonding on ALICE SSD
- and · · · ·

自分の仕事と関係ない・・・と思っているところに、 今直面している問題解決や、新しい種がたくさん あることを改めて実感したexcitingな5日間でした。

Worm (RAL) によれば、

What is the next "Big Thing" for vertexing?

- The tracking challenges of reconstructing b/c in high-speed, modern detectors have been met by silicon.
 - Is there room for improvement?
 - What is the next challenge?
- o Bigger?
 - Industrialization of silicon modules made CMS, ATLAS possible
 - More standardisation and simplification needed for any next step

- New technologies(?)
- Better/thinner detector means charge identification possible
- Excellent precision in ra and z; can reconstruct neutrinos in semileptonics

Steve Worm - RAL/LCFT November 10, 2005

Silicon system evolution – Physicist Moores Laws

 Moores law is often quoted in microelectronics to indicate an exponential change. Compare the situation in 1992 and 2005. Typical values (not the extremes).

	< 1992	2005	Factor	Doubling time
ASIC feature size	5 μπο5μπ	0.25µm:0.25µ m	400	15y
Sensor area	0.5 m ²	100 m²	200	1.7y
Sensor cost/cm2			0.1	4y
Strip channels	10⁵	107	100	2y
CCD channels	~ 10 ⁸	10º - 10º		-
FE speed	μsec	10 nsec	100	2 <i>y</i>
Power/ch	mW	mW	1	compensation

Cannot extrapolate – hit physical (& financial limits)

自分の仕事と関係ない・・・と思っているところに、 今直面している問題解決や、新しい種がたくさん あることを実感した5日間でした。

Worm (RAL) によれば、 今や *"biggerよ*りも*better detectors" が*必要である!

ということは、量より質・・・ならば我々にもチャンスがある!?・・・may be

三人寄れば文殊の知恵!互いのcommunicationを密にして MPGD研究会等を盛り上げていって独創性を高めていき、

VERTEX2006 には・・・

是非、日本からも報告を沢山出しましょう!