3層GEMチェンバー ゲイン特性測定

2006年 1月27日 内田智久 KEK 測定器開発室

池野正弘、宇野彰二、氏家宣彦、関本美智子、 田中秀治、田中真伸、仲吉一男、村上武(KEK) 門松宏治、杉山晃、山本拓也(佐賀大) 中野英一(大阪市大)

1

Introduction

GEMを使用して 2次元読み出し検出器 ^{中性子、X線検出器}

ゲイン特性の理解が必要

例えば、欲しいゲインで動作させる為のパラメータとは?

Outline

3層GEMチェンバーのゲイン特性測定

- テスト装置
- ゲイン特性
- 読み出しパッドとGEM foilからの信号
- 電子ドリフト時間と信号パルス幅
- まとめ

Test chamber

Triple GEM detector

Readout pads 15mm×15mm 36個=6行×6列

GEM foil

システム構成

A sample of spectrum

Pulse shape

3枚のGEM両面間の電圧を変化させて測定

E_D dependence

Drift領域の電場を変化させてゲインを測定

E_D dependence

E_D dependence Electric field map

Drift電場が弱い場合

Drift電場が強い場合

S.Bachmann, et. al., NIM A 438(1999) 376-408

E_D dependence

Induction 領域の電場を変化させてゲインを測定

E_I dependence

E, dependence **Electric field map**

@-02²00-7¥

S.Bachmann, et. al., NIM A 438(1999) 376-408

E_I dependence

Transfer領域の電場を変化させてゲインを測定

E_T dependence

E_{T1},E_{T2}独立測定

E_{T1}, E_{T2} dependence

Drift領域とInduction領域双方の特徴を持っているのではないか。

E_T dependence

穴の占める面積が約13%減る

E_D dependence

E₁ dependence (Ar-CO₂)

ここまでのまとめ GEMのゲイン特性

- GEM両面電極間の電圧に
 - 増幅率が敏感に変化する
 - 増幅度レンジが10²~10⁵
- Drift領域の電場が上昇すると
 - Collection efficiencyが減少
- Induction領域の電場が上昇すると
 - Extraction efficiencyが増加
- Gainは V_{GEM}+各領域の電場強度でほぼ決まる

パッドからの信号と フォイルからの信号

Drift velocity $2.5 \text{ cm}/\mu \text{ s}$ (at 3.2 kV/cm)

計算値と良く一致する

まとめ

- GEMの基本特性を測定した。
- GEM foilからの信号読み出した。
- GEM foilと読み出しパッドからの信号は電荷相 関があった
- ドリフト時間と信号パルス幅に関係があること を確認した。

ここから付録

Test chamber

Test chamber

スペーサー(G10フレーム)により間隔を調整

格子配置、正三角形配置

E_D dependence (P10)

Transfer gap = 1, 2, 4 mm

\mathbf{E}_{T} dependence

E_T dependence P10 gas, Relative Gain

E_T dependence P10 gas, Effective Gain

E_T dependence Ar-CO₂ gas, Relative Gain

E_T dependence Ar-CO₂ gas, Effective Gain

E_I dependence

E_I dependence P10 gas, Relative Gain

E_I dependence P10 gas, Effective Gain

E₁ dependence Ar-CO₂ gas, Relative Gain

信号パルス幅と距離 波形

Induction gapと信号

Mean of ADC counts=276.7

Induction gap = 2mm E_I =3.2kV

Mean of ADC counts=266.2

Induction gap = 4mm $E_1 = 3.2kV$

Mean of ADC counts=217.8

信号パルス幅と電場 波形

E_Iを変化させて測定(P10 gas)

Ar-CH₄(90/10)

E_Iを変化させて波形測定:P10 gas E_I =3.2kV, D_I=2mm

P10
$$V_{GEM}$$
=320V
 E_{D} =0.5kV/cm
 E_{T} =1.6kV/cm

E_I =1.28kV, D_I=2mm

P10
$$V_{GEM}$$
=320V
 E_{D} =0.5kV/cm
 E_{T} =1.6kV/cm

$E_1 = 0.64 kV, D_1 = 2mm$

P10
$$V_{GEM}$$
=320V
 E_{D} =0.5kV/cm
 E_{T} =1.6kV/cm

E_I =0.32kV, D_I=2mm

P10
$$V_{GEM}$$
=320V
 E_{D} =0.5kV/cm
 E_{T} =1.6kV/cm

E_Iを変化させて測定 (Ar-CO2 gas)

E_I=8.64kV/cm, D_I=2mm

Ar-CO₂ (70/30)
$$V_{GEM}$$
=360V
 E_{D} =0.5kV/cm
 E_{T} =1.8kV/cm

E_I=5.76kV/cm, D_I=2mm

Ar-CO₂ (70/30)
$$V_{GEM}$$
=360V
 E_{D} =0.5kV/cm
 E_{T} =1.8kV/cm

E_I=3.6kVcm, D_I=2mm

Ar-CO₂ (70/30)
$$V_{GEM}$$
=360V
 E_{D} =0.5kV/cm
 E_{T} =1.8kV/cm

E_I=0.72kVcm, D_I=2mm

Ar-CO₂ (70/30)
$$V_{GEM}$$
=360V
 E_{D} =0.5kV/cm
 E_{T} =1.8kV/cm