Mechanism of the r-Process and Implications for Its Astrophysical Site

Bradley S. Meyer *Clemson University*

Hierarchy of Statistical Equilibria in Nucleosynthesis

(0) Equilibrium with nonconstant nucleon number	
 (1) NSE with weak equilibrium (2) NSE with fixed Ye (3) QSE (equilibrium with fixed Ye and Yh) (4) Two QSE clusters (equilibrium with fixed Ye, Yh1, and Yh2) (5) Three QSE clusters (equilibrium with fixed Ye, Yh1, Yh2, and Yh3) • • • 	Physically possible equilibria in nucleosynthes (constant nucleon number)

More constraints on system

Parameters

- Y_e:
 - net number of electrons per nucleon
 - fraction of all nucleons that are protons
 - E.g., $Y_e = 0.5$ means equal numbers of neuetron and protons. $Y_e = 0$ means all neutrons. $Y_e=1$ means all protons.

Parameters (cont.)

- Entropy per nucleon (or ~number photons/nucleon)
 - Degrees of freedom per nucleon
 - In units of Boltzmann's constant k_B
 - -E.g., all free nucleons: s/k_B = about 3
 - E.g., all nucleons in ⁵⁶Fe: s/k_B about 3/56
 - $s/k_B > 20$ typically means a lot of photons and electron-positron pairs around.

Parameters (cont.)

- Timescale τ :
 - Density expansion efolding timescale
 - Typically milliseconds to seconds

The Key for a Successful r-Process

- Get enough neutrons per seed nucleus (roughly 100 / seed).
- Where are the protons at the time the rprocess begins? Assume protons in one heavy seed species h and in some other species o:

$$Y_{e} = \left[\frac{Z_{0}}{A_{0}} - \frac{Z_{h}}{A_{h} + 100}\right]X_{0} + \frac{Z_{h}}{A_{h} + 100}$$

Three Broad Regimes

- Low entropy (s/k~1-10): all protons in heavy seed nuclei:
 - X₀=0
 - $Z_{h}^{-} 30, A_{h}^{-} 100 \rightarrow Y_{e}^{-} 0.1 0.2$
 - Core material in supernovae, decompressing neutron star matter
- High entropy (s/k ~100, τ ~0.1 s): protons in heavy nuclei and alpha particles:
 - $X_0 = 0.5 (Z_0 = 2, A_0 = 4)$
 - $-Z_{h}^{-}$ 40, A_{h}^{-} 100 \rightarrow Y_{e}^{-} 0.35
 - Neutrino-energized ejecta in supernovae
- High entropy, fast expansion (BBN regime!): protons mostly free, but some in heavy nuclei (s/k~100, τ ~1 ms):
 - $X_0 = 0.495 (Z_0 = 1, A_0 = 1)$
 - $Z_{h} \sim 50, A_{h} \sim 120 \rightarrow Y_{e} \sim 0.5$
 - Fallback ejected matter in supernova, shocked surface layers of O/Ne/Mg cores

Low-entropy

- Typical $Y_e = 0.1-0.2$
- Sites: ejection of neutron-rich supernova core matter, decompression of neutron star matter
- Neutrons produced by electron capture → very high density
- Experimental issues: electron-capture rates, properties of neutron-rich nuclei
- Typical problem: ejection of too much matter

High-Entropy

- Typical $Y_e = 0.35$
- Site: neutrino ejected matter from nascent neutron stars
- Neutron-richness from neutrino interactions on free nucleons
- Experimental issues: neutrino physics, physics of neutron-rich nuclei
- Typical problem: getting the high-enough entropy

High-entropy, very fast expansion

- Typical Y_e=0.495
- Sites: fallback in core-collapse supernovae (Fryer et al. 2006), shocked surface layers in O/Ne/Mg cores (Ning et al. 2007)
- Neutron-richness from pre-supernova evolution $({}^{12}C + p \rightarrow {}^{13}N + \gamma \rightarrow {}^{13}C + e^+ + v)$
- Experimental issues: charged-particle reactions on heavy nuclei.
- Typical problem: getting fast enough expansion/high enough entropy

Production of ⁴He from n, p ($T_9 = 10 - 8$)

$p(n,\gamma)^{2}H(n,\gamma)^{3}H(p,n)^{3}He(^{2}H,p)^{4}He$ $\Rightarrow n+n+p+p \rightarrow \alpha$

Production of ⁴He from n, p ($T_9 < 8$)

$$^{56}Ni(n,\gamma)^{57}Ni(n,\gamma)^{58}Ni(p,\gamma)^{59}Cu(p,\alpha)^{56}Ni$$
$$\Rightarrow n+n+p+p \rightarrow \alpha$$

Too few heavy nuclei → neutrons and protons don't assemble into alpha particles and heavier species → many free neutrons and protons around to bombard the few heavy nuclei present

Meyer and Wang (2007)

Meyer and Wang (2007)

Libnucnet

- Free, open-source library of codes for storing and managing nuclear reaction networks.
- Released under the GNU General Public License.
- Available at www.webnucleo.org.

Conclusions

- Three broad regimes for obtaining enough neutrons per seed nucleus for a successful r-process.
- A single stellar site may achieve conditions in more than one regime.
- Observations will be needed to distinguish not only the stellar source of the r-process elements but also help to distinguish the mechanism.
- Determining mechanism of r-process is important for determining experimental issues
- Libnucnet, a free library of codes for storing and managing nuclear reaction networks, is available from www.webnucleo.org.