日本物理学会/山形大学/2008年9月20日

超新星爆発に関与する光核反応の実験的研究 Experimental Study of Photonuclear Reactions Relevant to Supernova Explosions

Tatsushi Shima

Research Center for Nuclear Physics, Osaka University

- Photonuclear reactions related to SNe
- Laser Compton-scattered γ-ray source
- Recent experiment; ex. ⁴He
- Summary & Outlook

Photonuclear Reactions Related to Supernova Explosions

- He-burning ; ${}^{12}C(\alpha,\gamma){}^{16}O \Leftrightarrow {}^{16}O(\gamma,\alpha){}^{12}C$ (detailed balance)
- Photodisintegration of iron core ;
 (γ,α), ⁴He(γ,p)³H(γ,n)²H(γ,n)¹H, ⁴He(γ,n)³He(γ,p)²H(γ,n)¹H
- r-, p-, γ-processes ; (p,γ), (n,γ), (γ,n), (γ,p), (γ,α)
- ν-process ; (ν,ν'x) (neutral current) ⇔ (γ,x)
 --- nuclear responses to dipole excitation by τ₃, σ·τ₃

Photonuclear reactions as a tool for nuclear astrophysics

- EM interaction; well-know !
- Sensitivity to multi-body channels;

$$X+Y+Z+... \rightarrow A+\gamma \iff A+\gamma \rightarrow X+Y+Z+...$$

ex.
$$2\alpha + n \rightarrow {}^{9}Be$$
, $3\alpha \rightarrow {}^{12}C$

- Enhancement of cross sections by phase space factor
- Analogy between γ-A and ν-A interactions

Low-energy γ-ray sources

- Discrete γ-rays from radioisotopes
- Bremsstrahlung (continuous energy) / tagged photons
- e^+e^- pair annihilation in flight; monoenergy γ + brems.
- Laser Compton Scattered γ (LCS-γ)
- Synchrotron photons from super-conducting wiggler

--- quasi-Planck spectrum (Utsunomiya, Nucl. Phys. A777)

- Coulomb Dissociation (CD) ; virtual photons, application to RI
 ⁷Be(p,γ)⁸B, ¹⁴C(n,γ)¹⁵C, ... RIKEN, GSI
- (p,p'); probe for M1 excitation RCNP

Laser Compton backscattering

Energy distributions

Bremsstrahlung, e⁺e⁻ annihilation in flight Laser Compton-Scattered γ (PH spectra of GSO scintillator)

component of brems.

No BG !!

Energy distribution

Advantages of LCS-γ

- Quasi-monochromatic; $\Delta E/E < \sim 10\%$, little BG
- Well-collimated; $\Delta \theta < 0.1$ mrad
- Highly polarized; linear or circular, P ~ 100%
- Continuous or pulsed; $\Delta t < 10$ ns

LCS γ -ray facilities in the world

Year	Facility	E _e	Laser	Ε _γ	Φ_{γ}
		[GeV]		[MeV]	[/sec/MeV]
1964	Lebedev	0.6	ruby	~10	~ 10 ⁶
1965	Harvard / CEA	6	ruby	~1000	5×104
1978	Frascati / LADON	1.5	Ar+	5 - 80	~ 10 ⁵
1985	ETL(AIST) / TERAS	0.2-0.8	Nd-YAG	2 - 40	10 ³ ~10 ⁵
1990	BNL / LEGS	2.8	Nd-YAG	150 - 470	10 ⁴ ~ 10 ⁵
1996	Grenoble / GrAAL	6	Ar+	1500	~ 4 × 10 ³
1999	SPring-8 / LEPS	8	Ar+	1500 - 3500	~104
1999	TUNL(Duke) / HlγS	0.2-1.2	FEL	2 - 70	~ 10 ⁷
2004	LASTI(U. Hyogo) / NewSUBARU	1 - 1.5	Nd-YVO ₄	16 - 40	10 ⁴ ~ 10 ⁵

Duke/HIgS (High Intensity γ-ray Source)

Intra-cavity Compton Backscattering of FEL photons by electrons circulating in the 1.2GeV Duke Storage Ring

■ $E_{\gamma} = 2 \sim 70 \text{ MeV}$, $\Delta E_{\gamma}/E_{\gamma} \sim 1\%$, $\Phi_{\gamma} \sim 10^7 / \text{MeV/s} (\rightarrow 10^9)$ ■ Time interval of γ -ray pulses ; 170ns

NewSUBARU Lab. of Adv. Sci. and Tech. for Industry, University of Hyogo, Japan

Subaru is an old Japanese meaning "get together", and also the Japanese name of the Pleiades Star Cluster.

	Subaru	NewSUBARU	SUBARU
Туре	Telescope	SR facility	Automaker
Location	Mauna Kea, Hawaii	Hyogo, Japan	Gunma, Japan
Feature	8.2m single mirror with adaptive optics	Race-track shape isochronous ring	Boxer engine + symmetrical AWD
Memorial	First light 1999	First beam 1998	WRC first win 1993

NewSUBARU/LCS-γ source

K. Aoki, S. Miyamoto, et al. NIM A516 (2004) 228-236

 $E_{\gamma} = 16 - 40 \text{ MeV}, \ \Phi_{\gamma} = 10^{4 \sim 5} \text{ photons/MeV/s}, \ \Delta E_{\gamma}/E_{\gamma} = 3 \sim 10\%$

Merits of NewSUBARU LCS γ-source

- Conventional lasers (Nd:YVO4, CO₂, etc.) are used.
 - → Various kinds of lasers can be employed. Flexibility in energy range, pulse structure, polarization, etc.
- Laser and electron beam collide in a straight section.
 - \rightarrow Little background from bremsstrahlung
- Top-up (top-loaded) operation is available.
 - \rightarrow High flux and excellent stability

$^{4}\text{He}(\gamma, X) \Leftrightarrow ^{4}\text{He}(\nu, \nu')$

- Neutrino-heating effect needs CS with 10% accuracy
- R-process in neutrino-driven wind

Meyer, ApJ449 (1995) L55

⁷Li, ¹¹B production by v-spallations

Woosley et al., Woosley & Weaver, Rauscher et al., Yoshida et al.

 $\frac{{}^{4}\text{He}(\nu,\nu'p){}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}(\alpha,\gamma){}^{11}\text{B}}{{}^{4}\text{He}(\nu,\nu'n){}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}(e^{-},\nu_{e}){}^{7}\text{Li}}$

Neutrino neutral reaction rate on ⁴He

Shell-model calculation

T. Suzuki et al., PR C74 034307 (2006)

Photodisintegration of ⁴He have been studied by means of monochromatic γ , bremsstrahlung, radiative capture...

Experiment at NewSUBARU LCS-γ facility

 $E_{\gamma} = 16 \sim 40 MeV, \Phi_{\gamma} = 2 \sim 4 \times 10^4 /sec, FWHM \sim 9\%, P \sim 100\%$

Time Projection Chamber

T. Kii, T. Shima, T. Baba, Y. Nagai, NIM A552 (2005) 329

- $\Omega \sim 4\pi$, $\varepsilon > 98\%$; high efficiency
- · track shape, dE/dx \Rightarrow event ID, d σ /d Ω , asymmetry

Event Identification

⁴He photodisintegrations

¹²C photodisintegrations

Three-body decays

Backgrounds

D(γ,**p**)n

⁴He(γ,p)³H (preliminary)

O RCNP-AIST (PRC72, 044004); λ=351nm (3rd), E_e=0.8GeV

- RCNP-NewSUBARU;
- RCNP-NewSUBARU;
 RCNP-NewSUBARU;

 λ =532nm (2nd), E_e=0.97GeV

 λ =1064nm (fund.), E_e≤1.46GeV

 λ =532nm (2nd), E_e=1.06GeV

• O RCNP-AIST (PRC72, 044004) ; λ =351nm (3rd), E_e=0.8GeV

- RCNP-NewSUBARU;
- RCNP-NewSUBARU;
- O RCNP-NewSUBARU;

 λ =532nm (2nd), E_e=0.97MeV

 λ =1064nm (fund.), E_e≤1.46GeV

 λ =532nm (2nd), E_e=1.06GeV

• Lund 2005-2007 (PRC75, 014007); tagged photons

⁴He(γ,pn)d (preliminary)

D(γ,**n**)**p**

Summary

- Laser Compton Scattered γ, combined with new detector techniques, provides a useful tool for high-precision studies of nuclear reactions induced by photons and also neutrinos.
- Complementary to radiative capture, CD, (p,p'), ...
- The LCS γ-source at NewSUBARU is now in operation, and several works for nuclear astrophysics have been performed successfully.
- ⁴He: excitation functions are measured up to 37MeV. Small cross sections below 30MeV were confirmed.
 GDR peak was found to locate at ~32.5MeV.
 → → → p-n, 1p1h, 3NF
- Other light nuclei and heavier p-nuclei are planned to be studied.

Outlook

- (γ ,n) cross sections of long-lived radioactive nuclide ; $\Phi_{\gamma} = 10^4 \text{ /s} \Rightarrow 10^6 \text{ /s}$; target: 1g \Rightarrow 10mg
- (γ,p), (γ,a) cross sections of p-nuclei ;

for noble gases --- TPC

for others --- activation method

- Reference data for indirect methods ; CD, (p,p'), ...
- Technical hint for experiment with other neutral beams ; n, v

Present; Nd:YVO₄ laser (1.06 μ m), 1W $\Rightarrow E_{\gamma} = 16.5 MeV, \Phi_{\gamma} \sim 3 \times 10^4 \text{ photons/s}$

Plan; Tm-doped fiber laser (2.05 μ m), 100W $\Rightarrow E_{\gamma} = 8.5 MeV, \Phi_{\gamma} > 10^{6} photons/s$

Neutron detector for (γ, n) (Konan Univ.)

Radioactivity < 1MBq, 100 μ mol \leftarrow T_{1/2} > ~10000yr

β[±]-γ, T_{1/2}>10⁴y (15 nuclides) ; ¹⁰Be, ²⁶AI, ³⁶CI, ⁴⁰K, ⁵⁹Ni, ⁷⁹Se, ⁹³Zr, ⁹²Nb, ^{98,99}Tc, ¹⁰⁷Pd, ¹³⁵Cs, ¹³⁸La, ¹⁸⁶Re, ²⁰⁸Bi

EC, no γ, T_{1/2}>100d (12 nuclides) ; ⁴¹Ca, ⁴⁹V, ⁵³Mn, ⁵⁵Fe, ⁹³Mo, ⁹⁷Tc, ¹⁰⁹Cd, ¹³⁷La, ¹⁷⁹Ta, ¹⁷⁸W, ¹⁹³Pt, ²⁰⁵Pb

 α - γ , T_{1/2}>10⁴y (16 nuclides) ; ²¹⁰Bi, ^{230,232}Th, ²³¹Pa, ^{233-236,238}U, ^{236,237}Np, ^{239,242,244}Pu, ^{247,248}Cm

 α , no γ , T_{1/2}>100d (4 nuclides) ; ¹⁴⁶Sm, ^{148,150}Gd, ¹⁵⁴Dy

Outlook

- (γ ,n) cross sections of long-lived radioactive nuclide ; $\Phi_{\gamma} = 10^4 \text{ /s} \Rightarrow 10^6 \text{ /s}$; target: 1g \Rightarrow 10mg
- (γ,p), (γ,a) cross sections of p-nuclei ;

for noble gases --- TPC

for others --- activation method

- Reference data for indirect methods ; CD, (p,p'), ...
- Technical hint for experiment with other neutral beams ; n, v

Collaborators

H. Utsunomiya, H. Akimune Department of Physics, Konan University

T. Mochizuki, S. Miyamoto, K. Horikawa Laboratory for Advanced Science and Technology for Industry, University of Hyogo

T. Hayakawa, T. Shizuma

Kansai Photon Science Institute, Japan Atomic Energy Agency

M. Fujiwara

Research Center for Nuclear Physics, Osaka University

Y. Nagai

Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency