New Era of Nuclear Physics in the Cosmos, the r-process Nucleo-Synthesis RIKEN, Japan, Sep. 25,26, 2008

Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process

T. Kawano Theoretical Division Los Alamos National Laboratory

Nuclear Reactions in the Fast Energy Range

- The Hauser-Feshbach statistical theory has been widely used for nuclear reaction data applications,
 - nuclear reaction rates for astrophysics (nucleo-synthesis)
 - nuclear data libraries for energy applications (mainly for neutron)
- however, questions still persist regarding:
 - applicability in the domain of off-stability
 - global inputs
 - level densities, optical potentials,
 - γ -ray strength function
 - nuclear deformation effect
 - width fluctuation correction $\langle \frac{\Gamma_a \Gamma_b}{\Gamma} \rangle \neq \frac{\langle \Gamma_a \rangle \langle \Gamma_b \rangle}{\langle \Gamma \rangle}$
 - inclusive / exclusive observables
 - partial γ -rays, coincidence, etc.
 - Monte Carlo approach to the HF needed
 - interaction on the excited state (isomer)

Nuclear Data for Astrophysical Applications

Nuclear Reaction Rate in Astrophysics

Nuclear Reaction Chain

- Nuclear reactions in astrophysical environments
 s and r-processes
 - targets are often neutron-rich and unstable
 neutron capture process is mostly important
 β-delayed neutron emission and fission
 Model prediction is crucial for
 - reaction cross section
 - Hauser-Feshbach theory
 - nuclear structure, including mass

Understanding of the neutron capture process is important to study nucleo-synthesis, which includes models for γ -ray strength function, GDR (Giant Dipole Resonance), nuclear level densities, and spectroscopic factors.

Nucleon Radiative Capture

CN and DSD Processes

Compound Reaction

- An incident neutron and a target form a compound nucleus, and it decays.
- Hauser-Feshbach statistical theory, with width fluctuation.
- Cross section decreases rapidly when neutron inelastic channels open.

Direct/Semidirect Capture

- Direct transition to one of the unoccupied single-particle state.
- Giant Dipole Resonance (GDR)

DSD becomes important when (1) incident particle energy is high, or (2) compound capture cross section is small (few resonance, neutron-rich, doubly-closed shell nuclei.)

Photo Emission / Absorption

Inverse process of γ -ray emission

Photo Reaction

Neutron capture calculations for s and p-process

- Total reaction cross section is determined by the optical model.
- The decay width the sum of transmission probabilities for all decay processes.
 - The γ-ray radiation width is calculated from the γ-ray absorption probability (the inverse process) and the final state density.
 - Brink's hypothesis is used.
 - Important to understand γ -ray transmission $T_{E1}(E)$, and the level density $\rho(E)$, off-stability.

γ -Ray Strength Function and Transmission

Standard Lorentzian

$$f_{\mathsf{E1}}(E_{\gamma}) = C\sigma_0 \Gamma_0 \frac{E_{\gamma} \Gamma_0}{(E_{\gamma}^2 - E_0^2)^2 + E_{\gamma}^2 \Gamma_0^2}$$

Generalized Lorentzian, finite value at low energies, energy dependent width

$$f_{\mathsf{E1}}(E_{\gamma}) = C\sigma_0 \Gamma_0 \left\{ \frac{E_{\gamma} \Gamma(E_{\gamma}, T)}{(E_{\gamma}^2 - E_0^2)^2 + E_{\gamma}^2 \Gamma^2(E_{\gamma}, T)} + 0.7 \frac{\Gamma(E_{\gamma} = 0, T)}{E_0^3} \right\}$$

where $C = 8.68 \times 10^{-8} \text{ mb}^{-1} \text{MeV}^{-2}$, or can be obtained by normalization to an experimental value if available.

The $\gamma\text{-}\mathrm{ray}$ transmission coefficient is given by

$$T_{\mathsf{E}1}(E_{\gamma}) = 2\pi E_{\gamma}^3 f_{\mathsf{E}1}(E_{\gamma})$$

Normalization of γ **-Ray Strength Function**

An absolute capture cross section is still hard to predict, however, it can be estimated from average resonance properties.

$$\frac{\langle \Gamma_{\gamma} \rangle}{D_0} \propto \int_0^{B_n} T_{\mathsf{E1}}(E_{\gamma}) \rho(E_x) dE_x$$

where

 D_0 is the average s-wave resonance spacing near the neutron binding energy:

 $lacksim \langle \Gamma_\gamma
angle$ is the average γ decay width

Compound Nucleus	D_0	$\langle \Gamma_{\gamma} \rangle$
	keV	meV
⁵⁷ Fe	25.4	920
⁹¹ Zr	6.0	130
²³⁹ U	0.0208	23.6

or we just re-normalize the calculated capture cross section to experimental data avaiable by adjusting $\langle \Gamma_{\gamma} \rangle / D_0$.

Level Density Parameter Systematics

Washing-out of Shell Effects

Shell correction (δW) and pairing energies (Δ) taken from KTUY05 mass formula

$$a = a^* \left\{ \mathbf{1} + \frac{\delta W}{U} \left(\mathbf{1} - e^{-\gamma U} \right) \right\}$$

$$a^* = 0.114A + 7.65 \times 10^{-5}A^2$$

At low excitation energies, the constant temperature model is used with

$$T = 48.1 A^{-0.88} \sqrt{1 - 0.1\delta W}$$

obtained from discrete level data of more than 1000 nuclei.

TK, S. Chiba, H. Koura, J. Nucl. Sci. Technol., 43, 1 (2006)

Hauser-Feshbach on Deformed Nuclei

Incorporate Coupled-Channels (CC) method into the HF formula

- Scattering matrix is no longer diagonal.
- Inverse channel problem
 - What is the appropriate transmission coefficient for the excited states ?
 - Replaced by the one for the ground state (historical)
 - Solve the CC equation for the excited state (detailed balance)
- Width fluctuation correction when off-diagonal elements exist
 - Moldauer
 - Engelbrecht-Weidenmüller transformation
 - Kawai-Kerman-McVoy (TK, L.Bonneau, A.Kerman, Nice conf. 2007)
 - Our preliminary results showed that KKM gives almost identical results as Moldauer.
 - Nishioka-Weidenmüller-Yoshida, GOE for coupled-channels

Coupled-Channels Potential Parameters

Modification to the Global CC Potential of Soukhovitskiĩ, et al.

- E. Sh. Soukhovitskii, et al., J. Phys. G: Nucl. Part. Phys. 30, 905 (2004).
- Adjust the imaginary potential to match the energy averaged S-matrix elements from resonance parameters (TK, F.H. Fröhner, NSE, **127**, 130 (1997)).
- When the S-matrix elements (resonance and optical model) are obtained, total and reaction cross sections are automatically reproduced.

$$\begin{split} W_{s} &= 2.59 \text{ MeV for } E_{n} < 1.13 \text{ MeV} \\ R' &= 9.606 \text{ fm } (9.6 \pm 0.1 \text{ in Atlas, Mughabghab}) \\ S_{0} &= 1.13 \times 10^{-4} ((1.29 \pm 0.13) \times 10^{-4}, \text{ibid}) \\ S_{1} &= 2.07 \times 10^{-4} ((2.17 \pm 0.19) \times 10^{-4}, \text{ibid}) \\ \text{Original SoukhovitskiĩPotential (in the paper)} \\ R' &= 9.57 \text{ fm} \\ S_{0} &= 0.95 \times 10^{-4} \\ S_{1} &= 1.80 \times 10^{-4} \end{split}$$

U-238 Total Cross Section

With Modified Soukhovitskiĩ Potential

- With the modified Soukhovitskii Potential, the energy averaged total cross section in the resonance range is well-reproduced.
- Above 1.13 MeV, the parameters are the same as the original ones.

Transmission for Inverse Reactions

Transmission Coefficients for the Inverse Channels

In a usual case, the ground-state transmission is used for all the calculation. However, this might underestimate the (n,n') cross-section to the 2^+ and 4^+ states, because the true transmission to the 2^+ and 4^+ are larger.

Capture Cross Section Calculations

Model Parameters

- Optical Potential
 - Modified Soukhovitskii
 - CC calculations are made for the G.S. band
 - $0^+-2^+-4^+-6^+-8^+$ coupling
 - Spherical potential for the uncoupled states

Level density

- Ignatyuk level density formula
- $a^*=34.69 \text{ MeV}^{-1}$ for ^{239}U (reproduce $D_0=20.3 \text{ eV}$)
- Shell correction and pairing energies from KTUY mass formula
- Spin-cut off parameter,

$$\sigma^2 = 3.47 \times 10^{-3} \sqrt{U/a} A^{5/3}$$

Average γ -ray width

- $\langle \Gamma_{\gamma} \rangle$ =23.36 meV from resonance analysis
- or, to be adjusted if needed

U-238 Results

Comparison with ENDF/B-VII (a part of standards evaluation)

Decomposition into Each Partial-Wave Contribution

Comparisons with DANCE Data

When the calculated capture cross section for ²⁴¹Am is averaged over the Jezebel spectrum, it gives a 5% higher value than that for ENDF/B-VII.

Direct/Semidirect Nucleon Capture Model

Direct Capture

- Electric dipole radiation transition from optical potential to single-particle state
- Amplitude

$$T_d = C_d \langle R_{nlj} | r | R_{LJ} \rangle$$

Semidirect (Collective) Capture

- Excite GDR, and decay into single-particle state
 - Vibration-particle coupling, $V_1h(r)$
 - Amplitude

$$T_s = C_s \langle R_{nlj} | V_1 h(r) | R_{LJ} \rangle$$

$$\times \frac{|M_{GDR}|^2}{E_{\gamma} - E_{GDR} + i\Gamma_{GDR}/2}$$

DSD with Hartree-Fock BCS Theory

L. Bonneau, T.K., T. Watanabe, S. Chiba, Phys. Rev. C 75, 054618 (2007)

Model Improvements

spectroscopic factor ${\cal S}_{ljK}$

previous studies

experimental data (often not available for astrophysical calculations)

- DSD/HF-BCS
 - single-particle occupation probabilities
 - no experimental data needed

single-particle wave-function, $R_{ljK}(r)$

- previous studies
 - spherical Woods-Saxon, Nilsson model, coupled-channels model to bound states
- DSD/HF-BCS
 - HF-BCS calculation and decomposition into spherical HO basis
 - consistent treatment for all nuclei from spherical to deformed nuclei

Calculated Results

DSD Cross Sections for Spherical and Deformed Cases

Occupation Probabilities for U-238

Neutron Capture Off-Stability — Sn-122,132

- Since global Hartree-Fock-BCS calculations for all nuclides are feasible, this technique will be a powerful tool to estimate the neutron capture rates in the r-process.
- HF calculation problems for the odd nuclei still exist.
- Proton capture calculations underway.

Future Challenge and Works in Progress at LANL

Applications of the Hauser-Feshbach Model to Different Areas

Combining with nuclear structure calculations

- β -decay and electron capture produce highly excited states of nuclei, and the excitation energies can be larger than the neutron separation energy.
- Nuclear structure models, such as QRPA, predict final states of β -decay and EC.
- Compound decay from a daughter nucleus at given E_x, J^{π} .

Monte Carlo approach to the Hauser-Feshbach

- HF gives an integrated cross-section for all possible intermediate transitions.
- However, recent experiments are sometimes conducted by measuring partial γ -rays, coincidence with a particular γ -ray transition, selected events such as a fixed γ -ray multiplicity.
- Correlation information is needed.

Application of HF to Delayed Neutron Emission

QRPA and Hauser-Feshbach model for Beta-Delayed Neutron

We assume that the excited state after β -decay is a compound state, having a fixed J value, $|I - 1| \le J \le I + 1$, where I is the spin of precursor.

Sequential Neutron Emissions

Electron capture produces a highly excited state, which subsequently decays by emitting several neutrons (very fast process).

Monte Carlo Simulation for Particle Emission

Application of Monte Carlo to Hauser-Feshbach Model at LANL

- \blacktriangleright β -delayed γ
- prompt fission neutron spectrum
 - n- γ correlation
 - γ -ray competition
- \mathbf{P} γ -ray cascading
 - γ -ray multiplicity dist.

A preliminary result of the γ -ray spectra from proton capture for the multiplicity 3 case (2 γ rays and the 2⁺ \rightarrow 0⁺ transition). Data taken from the proc. of Yosemite conference, 2008

Concluding Remarks

Nuclear Reaction Modeling: Recent Development for Astrophysics

Compound Nuclear Reaction

Improved Hauser-Feshbach model for capture reaction, including nuclear deformation effect, which supports experimental data at LANSCE with DANCE.

Direct/Semidirect Nucleon Capture

The Hartree-Fock BCS theory for the DSD process has a potential to predict neutron capture cross-sections near the neutron drip-line.

Extension of the Hauser-Feshbach Model Applications

- Beta-delayed and EC neutron emission
- Prompt fission neutron spectra
- Monte Carlo approach : correlations of particle emissions

