Microscopic approaches to nuclear level densities (核準位密度に対する微視的アプローチ)

H. Nakada (Chiba U.)

@ RIKEN (Sep. 25, 2008)

Contents:

- I. Introduction
- II. Phenomenology
- III. Microscopic approaches
- IV. Brief survey of SMMC
 - V. SMMC level densities
- VI. Summary & future prospect

I. Introduction

for A(a, b)B reaction $\sigma_{(a,b)} \propto \sum_{J_f \pi_f} \int dE_f T_{J_i \pi_i}^{(a)}(E_i) T_{J_f \pi_f}^{(b)}(E_f) \rho_{J_f \pi_f}(E_f)$ \leftrightarrow Hauser-Feshbach formula

 $T_{J\pi}^{(a/b)}(E)$: transmission coefficient from compound state $\rho_{J\pi}(E)$: level density

e.g. s- & r-processes \cdots (n, γ) vs. β -decay

 $\sigma_{(n,\gamma)} \leftarrow (a = n, b = \gamma)$ $E_i = E_f + E_\gamma - S_n \quad (\to E_f \lesssim S_n)$

rp-process \cdots (p, γ) vs. β -decay

Experimental methods to measure nuclear level densities

- 1. Direct counting of levels lowest-lying states or light nuclei $(E_x \lesssim 2 3 \,\mathrm{MeV})$
- 2. Level spacing among neutron resonances $(\rho = \overline{D}^{-1})$ — small energy range around $E_x = S_n \sim 8 \text{ MeV}$, restricted to s-wave
- **3. Ericson fluctuation** $-E_x \sim 20 \text{ MeV}$
- 4. Charged particle reactions $(\leftarrow reaction model)$
- 5. 'Oslo method' $\cdots \gamma$ -ray matrix $P(E_x, E_\gamma) = C(E_x) F(E_\gamma) \rho(E_x E_\gamma)$ (\leftarrow Brink-Axel hypothesis)

Refs.: T. S. Tveter *et al.*, Phys. Rev. Lett. 77, 2404 ('96)
E. Melby *et al.*, Phys. Rev. Lett. 83, 3150 ('99)
A. Schiller *et al.*, Phys. Rev. C 61, 044324 ('00)
M. Guttormsen *et al.*, Phys. Rev. C 62, 024306 ('00)

 $- E_x \sim 3 - 7 \,\mathrm{MeV}$

$\textbf{II. Phenomenology} \qquad (\rightarrow \textbf{Why microscopic ?})$

Conventional approach to nuclear level densities

★ Backshifted Bethe's formula (\leftarrow Fermi-gas model)

$$\rho(E_x) = \frac{\sqrt{\pi}}{12} a^{-1/4} (E_x - \Delta)^{-5/4} \exp\left[2\sqrt{a(E_x - \Delta)}\right]$$
 (for state density)

··· fits well to experimental data (except at very low E_x), if the parameter a (& Δ) is adjusted

 $(\Delta: \text{ backshift } \leftrightarrow \text{ pairing \& shell effects})$

$$\rho_{J,\pi}(E_x) = \rho(E_x) \frac{2J+1}{4\sqrt{2\pi\sigma^3}} \exp\left[-J(J+1)/2\sigma^2\right]; \quad \sigma = \mathcal{I}\sqrt{(E_x - \Delta)/a}$$
$$\left(\rho(E_x) = \sum_{J,\pi} (2J+1) \rho_{J,\pi}(E_x)\right)$$

However, 1) $a = A/6 \sim A/10 \,\mathrm{MeV^{-1}}$,

in contrast to the Fermi-gas prediction $a \approx A/15$ 2) a: nucleus-dependent (not only A-dependent) — shell effects, *etc.*

fitted values of *a*:

Ref.: Bohr & Mottelson, vol. 1

Note: 10% change in $a \rightarrow$ change in $\rho(E_x)$ by greater than factor 10! (for $A \sim 150$, $E_x \sim 8 \text{ MeV}$) For better E_x -dep. — correction for low E_x part ★ Constant-T formula $(\leftrightarrow T$ -dep. of pairing) $\rho(E_r) \propto \exp[(E_r - E_1)/T_1]$ for $E_r < E_M$ \rightarrow matching to BBF at $E_x = E_M$ To get less A-dep. parameters — nucl.-dep. corrections $\star a \to E_x$ -dep.: $a(E_x) = \tilde{a} \left(1 + \delta W \frac{1 - \exp[-\gamma(E_x - \Delta)]}{E_x - \Delta} \right)$ δW : shell correction energy, $\gamma = \gamma_1 A^{-1/3}$ \bigstar Collective enhancement factor $K_{\rm vib}(E_x)$, $K_{\rm rot}(E_x)$ e.g. $K_{\text{rot}}(E_x) = \max\left(\left[0.01389A^{5/3}\left(1+\frac{\beta_2}{3}\right)\sqrt{\frac{E_x-\Delta}{a}}-1\right]\frac{1}{1+\exp(\frac{E_x-E_c}{d})}+1,1\right)$ \rightarrow can be harmonious with $a \approx A/15 \,\mathrm{MeV}^{-1}$ (Fermi-gas value)

• many corrections & parameters introduced

— origin? estimate? (physics?)

• significant nucleus-dependence still remains

e.g. for $\tilde{a}(:$ "asymptotic value" of a) & σ

Ref.: A. J. Koning et al., Nucl. Phys. A810, 13 ('08)

 \implies It has been difficult to predict nuclear level densities

to good accuracy

III. Microscopic approaches

What is needed?

(1) shell effects (2) 'collective' 2-body correlations

e.g.
$$V = -\frac{\kappa}{2} \hat{
ho}^2$$
 ($\hat{
ho}$: 1-body op.)
typically κ : large \leftrightarrow colle

typically, κ : large \leftrightarrow collective

Why microscopic?

- deeper understanding
- fewer parameters (in Hamiltonian) direct cal. of $\rho(E_x)$ (not via BBF) $\rightarrow \begin{cases} \text{good accuracy} \\ \text{proper nucleus-dependence} \end{cases}$
- What is "microscopic"? \cdots starting from NN (shell model) int.

A) microscopic s.p. model $\rightarrow \begin{cases} evaluation of (BBF) \text{ parameters} \\ combinatorial counting \end{cases}$

— not really microscopic *e.g.* needs phen. $K_{vib}(E_x)$, $K_{rot}(E_x)$

- B) NN int. \rightarrow dist. of levels in terms of moments (J. B. French *et al.*) — works well in certain cases
 - \circ g.s. energy? \rightarrow exponential convergence (M. Horoi *et al.*) • influence of phase transition? deformed nuclei?
- C) full shell model exact treatment of int. \cdots desirable!
 - \rightarrow (1) shell effects & (2) 2-body correlations
 - are fully taken into account within the model space
 - large model space required
 - \rightarrow shell model Monte Carlo (SMMC) (H.N. & Y. Alhassid)

for each shell model config. [m]

$$M_{\nu}([m]) = \frac{1}{d_{[m]}} \operatorname{Tr}_{[m]}(H^{\nu}) \to \rho_{[m]}(E) \to \rho(E) = \sum_{[m]} d_{[m]} \rho_{[m]}(E)$$

(J, π specified $\to \rho_{J,\pi}(E)$)

 $\rho(E) \to \rho(E_x); \quad E_x = E - E_0 \quad (E_0: \text{ g.s. energy} \leftarrow \text{separate estimate})$

²⁸Si (?), J = 0 levels within *sd*-shell config.

Ref.: M. Horoi *et al.*, P.R.C 67, 054309 ('03)

- meaningful comparison in linear scale!
 - cf. comparison of a (& Δ)
- model space \rightarrow physical only at low-energy ($E_x \lesssim 20 \,\mathrm{MeV}$)

Level density by moment method

pf-shell nuclei $\leftarrow sd + pf + 0g_{9/2}$ -shell, SDI, $\nu \leq 4$

Ref.: V. K. B. Kota & D. Majumdar, N.P. A604, 129 ('96)

••• seems good for nearly spherical nuclei for well-deformed nuclei? — no justification (needs test)

IV. Brief survey of SMMC

 \rightarrow statistical properties — thermodynamics in finite systems

 SMMC \rightarrow evaluate $\langle \mathcal{O} \rangle_{\beta} = \text{Tr}(\mathcal{O}e^{-\beta H})/Z(\beta)$ (e.g. $E(\beta) = \langle H \rangle_{\beta}$) H: shell model Hamiltonian (1- + 2-body)

 $e^{-\beta H} \rightarrow$ auxiliary-fields ($\sigma_{\alpha}(\tau)$) path integral rep.

MC sampling $\sigma_k = \{\sigma_\alpha(\tau)\}_k \to \langle \mathcal{O} \rangle_\beta \approx \frac{1}{N_k} \sum_k \langle \mathcal{O} \rangle_{\sigma_k}$ (with stat. error)

• advantage: easier to handle large model space

(:: $\sigma_{\alpha}(\tau) \leftrightarrow$ "mean-field")

- finite-T method \rightarrow suitable for statistical properties (but not for distinguishing discrete levels)
- conservation laws \rightarrow projections ((Z, N), π , J, etc.)
- $E_0 = \lim_{\beta \to \infty} \langle H \rangle_{\beta}$... evaluated also by SMMC
- disadvantage: sign problem

— propagator $Tr(e^{-\beta h(\sigma_k)})$: not necessarily positive-definite dominant part of nuclear int. — sign good !

V. SMMC level densities

★ Nuclei around Fe-Ni region

• setup

```
 \begin{array}{l} \text{model space: full } pf + 0g_{9/2} \\ \text{Hamiltonian: s.p. energy} \leftarrow \text{W-S pot.} \\ \\ \text{int.} & \begin{cases} T = 1 \text{ monopole pairing} \\ \text{strength} \leftarrow \text{even-odd mass difference} \\ T = 0 \text{ surface-peaked multipole } (\lambda = 2, 3, 4) \\ \text{strength} \leftarrow \text{self-consistency} + \text{renorm.} \\ \text{renorm. factor} \leftarrow \text{realistic int.} \end{cases}
```

no adjustable parameters!

• applications

 $\rho(E_x) \rightarrow \begin{cases} \text{comparison to BBF} \\ \text{extention to higher } E_x \text{ (via connection with HF)} \end{cases}$ $\rho_{\pi}(E_x) \ (\leftarrow \pi\text{-proj.}) \\ \rho_{J}(E_x), \ \rho_{J\pi}(E_x) \ (\leftarrow J\text{-proj.}) \quad \rightarrow \text{ comparison to spin cut-off model} \end{cases}$

State density $\rho(E_x)$ of A = 55 isobars:

Exp.: W. Dilg et al., Nucl. Phys. A217, 269 ('73)

 π -dep. state density $\rho_{\pi}(E_x)$ of ⁵⁶Fe:

Ref.: H.N. & Y. Alhassid, P.R.L. 79, 2939 ('97); P.L.B 436, 231

 \Rightarrow strong parity-dependence?

recent exp. \rightarrow

exc. out of *sd*-shell play a role

Ref.: Y. Kamylov *et al.* Phys. Rev. Lett. 99, 202502

Level density $\sum_{J\pi} \rho_{J\pi}(E_x) = \rho_{M=0}(E_x)$ of ⁵⁶Fe, ^{60,62}Ni, ⁶⁰Co: ($\leftarrow J_z$ -proj.) \rightarrow straightforward comparison with exp.

J-dep. level density $\rho_{J\pi}(E_x)$ of ⁵⁶Fe:

\star Well-deformed rare-earth nuclei

Ref: Y. Alhassid, L. Fang & H.N., P.R.L. 101, 082501 ('08)

• setup

model space: $\begin{cases} p : (Z = 50 - 82 \text{ shell}) + 1f_{7/2} \\ n : 0h_{11/2} + (N = 82 - 126 \text{ shell}) + 1g_{9/2} \end{cases}$ \leftarrow expand def. WS solutions by sph. WS orbitals $(0.1 < \langle \hat{n}_{\alpha i} \rangle / (2j+1) < 0.9)$ Hamiltonian: s.p. energy \leftarrow W-S pot. + HF-type correction $\text{int.} \begin{cases} pp \& nn \text{ monopole pairing} \\ \text{strength} \leftarrow \text{even-odd mass difference} \\ + \text{fit to } \mathcal{I}_g \\ (p+n) \text{ surface-peaked multipole } (\lambda = 2, 3, 4) \\ \text{strength} \leftarrow \text{self-consistency} + \text{renorm.} \\ \text{renorm. factor for } \lambda = 2 \leftarrow \text{fit} \end{cases}$ adjust. parameters \cdots insensitive to nuclide (?)

• applications

 $\rho(E_x) \rightarrow \text{comparison to exp.}$

(represented by (BBF + constant-T)-model)

SMMC state density in ¹⁶²Dy vs. exp. & HFB

- excellent agreement with exp.
- almost equal "slope" at high E_x , but factor 10^2 enhancement from finite-T HFB \leftrightarrow collective rotation

VI. Summary & future prospect

Summary — Microscopic approaches are promising in reproducing and predicting nuclear level densities to good precision.

Future prospect (problems to be solved)

• Further tests in well-deformed nuclei!

— odd-A & odd-odd nuclei, etc.

• Better understanding?

effects of 'phase transitions' role of collectivity (quantitative estimate) others?

• Systematic calculations !

connection of different model spaces !

 $\leftarrow \begin{cases} powerful \& massive CPUs (+ man-power)? \\ simplification based on physics understanding? \end{cases}$

··· "RIPL-4 hopefully contain SMMC level densities"

(by Capote-Noy @ SNP2008)

Appendix: SMMC calculation in 162 Dy

- ★ Biggest SMMC calculations to date !
- **\star** Nucleus-dependence of setup? (\leftrightarrow predictability)
 - Methods should be generic!
 - Actual values?

 \leftrightarrow "slope" of $\ln \rho(E_x)$ — can be adjusted in HFB

strength of pairing int. $\leftrightarrow \mathcal{I}_g \cdots$ rotation

 $\leftrightarrow \rho(E_x)$ at $E_x \lesssim 2 \,\mathrm{MeV}$

— needs to be confirmed !

 \star Rotational levels?

 $E_x \lesssim 1 \text{ MeV} \iff T \lesssim 0.2 \text{ MeV} \implies \text{g.s. band only}$ $\rightarrow E(T) \approx E_0 + T, \langle J^2 \rangle \approx 2\mathcal{I}_g T \qquad \text{cf. if vibrational, } \langle J^2 \rangle \propto T^2$

