Probing Nuclear Statistical Quantities by Photodisintegration

<u>光核反応による統計的核物理量の研究</u>

H. Utsunomiya (Konan University)

RIKEN Workshop, 25-26 September

Outline

- **1. Japan synchrotron radiation facilities**
- 2. Photodisintegration for nuclear statistical quantities
- **3.** Systematic study of E1 & M1 γ strength functions for Zr isotopes
- 4. Pigmy E1 resonance for Sn isotopes
- 5. Nuclear level density
- 6. Summary

Collaborators

Konan U.	H. Utsunomiya, T. Kaihori, H. Akimune, T. Yamagata
AIST	K. Yamada, H. Toyokawa, T. Matsumoto, H. Harano
JAEA	H. Harada, F. Kitatani, S. Goko
RCNP	T. Shima
NewSUBARU	S. Miyamoto
Texas A&M, USA	YW. Lui

ULB, Brussels, BelgiumS. GorielyCEA-Bruyères-le-Châtel, FranceS. HilaireZG Petten, The NetherlandsA.J. Koning

この研究発表は、旧電源開発促進対策特別会計法及びに特別会計に関する法 律(エネルギー対策特別会計)に基づく文部科学省からの受託事業として、 <u>北海道大学が実施した平成20年度「高強度パルス中性子源を用いた革新的原</u> <u>子炉用核データの研究開発」の成果を含みます</u>。

AIST Electron Accelerator Facility

Tsukuba Electron Ring for Acceleration and Storage (TERAS)

• Energy
$$E_{\gamma} = 1 - 40 \text{ MeV}$$

Neutron Detector System

Triple-ring neutron detector 20 ³He counters (4 x 8 x 8) embedded in polyethylene

New SUBARU facility

兵庫県立大 高度研

Radiative Capture and Photodisintegration

Neutron Capture and Photodisintegration

Brink hypothesis: GDR is built on excited states.

Main ingredients in the Talys code

Talys code: Koning, Hilaire, Duijvestijn, Proc. Int. Conf. on Nuclear Data for Science and Technology AIP Conf. Proc. 769, 1154 (2005).

E1 γ strength function
Lorentzian models:Axel, PR126 (1962), Kopecky & Uhl, PRC41 (1990)
HFB+QRPA model: Goriely, Khan, Samyn, NPA739 (2006)

Huclear Level density

HFB+ Combinatorial model: Hilaire & Goriely, NPA779 (2006)

Spin-flip giant M1 γ strength function by Bohr & Mottelson Global systematics in RIPL Handbook Lorentzian function : E_0 =41A^{-1/3} MeV, Γ_0 = 4 MeV, f_{M1} =1.58 10⁻⁹ A^{0.47} MeV⁻³ at 7 MeV

(y,n) cross sections on Zr isotopes

Threshold behavior of (γ,n) cross sections is given by

$$\sigma(E) = \sigma_o \left(\frac{E - S_n}{S_n}\right)^{\ell + 1/2}$$

In the E1 photo-excitation, $\ell = 1$ is allowed. However, the experimental cross sections are strongly enhanced from the expected $\ell = 1$ behavior.

The Lorentzian parametrization of the E1 γ -ray strength function

The generalized Lorentzian parametrization of the E1 γ -ray strength function significantly underestimates the cross sections .

The standard Lorentzian parametrization of the E1 γ -ray strength function for ⁹²Zr can fit the (γ ,n) data, but strongly overestimates (n, γ) cross sections.

M1 strength in Zr isotopes in the photoneutron channel

H. Utsunomiya et al., PRL100 (2008)

⁹¹Zr(n,γ)⁹²Zr

The HFB+QRPA E1 γ SF Plus <u>M1 resonance</u> E_o= 9 MeV, σ_0 =7.5mb, Γ =2.5MeV in Lorentz shape.

M1 strength in Zr isotopes

(p,p'): giant M1

CESCHQAHCCPRC26, 87 (1982) Nanda et al., PRL51 (1982) Anantaraman et al., PRL46 (1981) Bertrand et al., PL103B (1981)

Other probes

 (γ, γ') : giant M1 resonance

Laszewski et al., PRL59 (1987) (e,e') weak & fragmented Meuer et al., NPA 1980

 ${}^{96}Zr(\gamma,n){}^{95}Zr$

⁹⁵Zr[T_{1/2}=64 d](n, γ)⁹⁶Zr s-process branching

Uncertainties : 30 – 40% in 0.01 – 1 MeV

Sources of uncertainties

NLD models 1.HFB+Combinatorial 2.BSFG 3.CT (Constant Temp.) 4.GSM (Gen. Superfluid) 5.HFBCS+statisticales

<u>Optical potential models</u> 1.KD (Koning & Delaroche 2003) 2.JLM (Bauge et al. 2001)

 93 Zr(n, γ) 94 Zr

⁹³Zr[T_{1/2}=1.5 × 10⁶ y](n, γ)⁹⁴Zr Transmutation of nuclear waste ⁹³Zr known as LLFP (long-lived fission products)

Preliminary

Uncertainties : 40 – 50% in 0.01 – 1 MeV

Sources of uncertainties NLD & Optical pot. models

Pigmy E1 resonance in ¹¹⁷Sn

断面積のしきい値振る舞い(1点鎖線、I=1)に 従わない。 $\sigma(E) = \sigma_o \left(\frac{E-S_n}{S_n}\right)^{\ell+1/2}$ Lorentz型のガンマ線強度関数(破線)で ¹¹⁷Sn(g,n)断面積はフィットできるが、 ¹¹⁶Sn(n,g)断面積はoverestimateする。

解: HFB+QRPAガンマ線強度関数(点線)に Pigmy resonance
(E_o=8.5 MeV, Γ=2 MeV, s_o=7 mb in Gaussian shape) を導入すれば、
¹¹⁷Sn(γ,n)断面積だけでなく¹¹⁶Sn(n,γ)断面積もほぼ再現できる。

Pigmy resonance in ¹¹⁶Sn

しきい値が高いeven-A核である¹¹⁶Snの場合は、pigmy resonanceの high energy partが(g,n)断面積に寄与していると考えられる。 γ -ray SF for ^{117,116}Sn

 $f_{\gamma}(E1) [MeV^{-3}]$

Osloデータとの比較

s-process production of ¹⁸⁰Ta^m

¹⁸¹Ta

Experimental results, and comparison with theoretical models

Goko et al. Phys. Rev. Lett. 96, 192501 (2006)

Summary

- Hauser-Feshbach model calculations of reaction rates of direct relevance to the nucleosynthesis of heavy elements.
- Systematic studies of extra γ-ray strength arising from M1 and pigmy E1 resonance in the low-energy tail of GDR are important to improve the predictive power of the Hauser-Feshbach model for the nucleosynthesis of heavy elements.
- **H** The unique spin and parity of isomeric states can be a good probe of NLD by measuring relevant partial cross sections