Spectroscopy of charmed baryons at the J-PARC high-momentum beam line

K. Shirotori for the J-PARC E50 collaboration

Research Center for Nuclear Physics (RCNP) Osaka University

3rd International Workshop on "State of the Art in Nuclear Cluster Physics" 30 May 2014

Contents

- Physics motivation: Diquark correlation
- Experiment at J-PARC
- Systematic study
- Summary

Physics motivation

• • •

What is a building block of hadrons ?

Constituent Quark

Exotic hadron

q-q correlation (diquark)

Charmed baryon spectrum: "Excitation Mode"

Heavy Quark: Weak color-magnetic interaction

Decay property

- Decay measurement: $\Gamma_{\pi\Sigma c} \Leftrightarrow \Gamma_{ND}$
 - $\pi^{-} + \Sigma_{c}^{++}, \pi^{+} + \Sigma_{c}^{0}$ $\mathbf{p} + \mathbf{D}^{0}$

Production cross section

Missing mass spectroscopy: $\pi^- + p \rightarrow Y_c^{*+} + D^{*-}$

 D^* exchange at a forward angle

Production cross section ⇒ Overlap of wave function * charm and q-q (spectator)

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_{-} \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

Spin/Parity of Y_c*
 Momentum transfer (q_{eff})

 $I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$

A: (baryon size parameter)⁻¹

S.H. Kim, A. Hosaka, H.C. Kim, H. Noumi, K. Shirotori, arXiv:1405.3445.

Production cross section

Charmed baryon spectroscopy

Propose

- Investigate charmed baryons
 by Missing Mass spectroscopy
- Systematic measurement
 - Excited states search
 - Excitation energy
 - Decay property
 - Production cross section
- \Rightarrow Diquark correlation
 - Excitation mode

\bullet \bullet \bullet

J-PARC & Hadron Facility

High-momentum beam line

Construction by 2016

High-momentum beam line for 2^{ndary} beam

- High-intensity beam: > 1.0×10^7 Hz π (< 20 GeV/c)
 - Unseparated beam
- High-resolution beam: Δp/p ~ 0.1%(rms)
 - Momentum dispersive optics method

High-momentum beam line for 2^{ndary} beam

Experiment

 $\pi^{-} + p \rightarrow Y_{c}^{*+} + D^{*-} \text{ reaction } @ 20 \text{ GeV/c}$ 1) Missing mass spectroscopy $- D^{*-} \rightarrow \overline{D}^{0} \pi_{s}^{-} \rightarrow K^{+} \pi^{-} \pi_{s}^{-} : D^{*-} \rightarrow \overline{D}^{0} \pi_{s}^{-} (67.7\%), \overline{D}^{0} \rightarrow K^{+} \pi^{-} (3.88\%)$

Experiment

- $\pi^- + p \rightarrow Y_c^{*+} + D^{*-}$ reaction @ 20 GeV/c
 - 1) Missing mass spectroscopy

$$D^{*-} \to \overline{D}{}^0 \pi_s^- \to K^+ \pi^- \pi_s^- : D^{*-} \to \overline{D}{}^0 \pi_s^- (67.7\%), \overline{D}{}^0 \to K^+ \pi^- (3.88\%)$$

- 2) Decay measurement
- Decay particles (π^{\pm} & proton) from Y_c^*

Experimental design

***** Assumed production cross section: $\sigma \sim 1$ nb

- π^- + p $\rightarrow \Lambda_c^+$ + D^{*-} reaction @ 13 GeV/c: σ < 7 nb (BNL data)
- Dipole-magnet spectrometer
- High-rate beam & High-rate detector system

***** Assumed production cross section: $\sigma \sim 1$ nb - $\pi^- + p \rightarrow \Lambda_c^+ + D^{*-}$ reaction @ 13 GeV/c: $\sigma < 7$ nb (BNL data)

- Dipole-magnet spectrometer
- High-rate beam & High-rate detector system

***** Assumed production cross section: $\sigma \sim 1$ nb - $\pi^- + p \rightarrow \Lambda_c^+ + D^{*-}$ reaction @ 13 GeV/c: $\sigma < 7$ nb (BNL data)

- Dipole-magnet spectrometer
- High-rate beam & High-rate detector system

Experimental design

- ***** Assumed production cross section: $\sigma \sim 1$ nb - $\pi^- + p \rightarrow \Lambda_c^+ + D^{*-}$ reaction @ 13 GeV/c: $\sigma < 7$ nb (BNL data)
- Dipole-magnet spectrometer
- High-rate beam & High-rate detector system

Charmed baryon spectrometer

Large Acceptance Multi-Particle Spectrometer

- Acceptance: ~50% for D*
- Mass resolution: $M_{\Lambda c^*} = 10 \text{ MeV}(\text{rms}) @ 2.7 \text{ GeV/}c^2$

Expected spectra

Known Mass & Width in PDG

- Background generated by the hadronic reaction code
 ⇒ Reductions of background were precisely studied.
- * Achievable sensitivity of 0.1–0.2 nb: $(3\sigma \text{ level}, \Gamma < 100 \text{ MeV})$

Expected spectra

HQ doublets: Enhanced & Ratios (0°)
 ⇔ Internal structure of charmed baryons

*Diquark correlation: λ -mode excitation

25

Systematic study

Charm and Strange

Strangeness sector

Hyperons: Λ^* , Σ^* states $-\pi^- + p \rightarrow \Lambda^*(\Sigma^{*0}) + K^{*0}$: $\sigma \sim 1-10 \ \mu b$ $-\pi^+ + p \rightarrow \Sigma^{*+} + K^{*+}$: $\sigma \sim 1-10 \ \mu b$

* Missing mass & decay analysis

Strangeness sector

• L=1 excited states: Confinement & spin-spin interaction

• L=1 excited states: Confinement & spin-spin interaction

• L=1 excited states: Confinement & spin-spin interaction

Systematic study

• Excited state measurements

Hyperons

- Decay property: $\pi \Sigma / K_{bar} N$
- Production rate
- ⇒ Known states measured Production rate: λ mode * ρ mode through λ/ρ mixing

Charmed baryons

- Decay property: $\pi \Sigma_c / DN$
- Production rate

 $\Rightarrow Systematic measurement$ $* Clear distinction of <math>\lambda$ and ρ excitation modes

Systematic study

• Excited state measurements

Hyperons

- Decay property: $\pi \Sigma / K_{bar} N$
- Production rate

⇒ Known states measured Production rate: λ mode * ρ mode through λ/ρ mixing **Charmed baryons**

- Decay property: $\pi \Sigma_c / DN$
- Production rate

⇒ Systematic measurement * Clear distinction of λ and ρexcitation modes

Proper degree of freedom to understand structure

- Connection to QCD
- Diquark: Just correlation between two constituent quarks ? or Quasi-particle object of two quarks ?

* Essential step to understand low energy QCD nature

Summary

- Charmed baryon spectroscopy
 - Diquark correlation: λ and ρ mode excitation
 - Inclusive measurements by missing mass spectroscopy
- Experiment at the J-PARC high-p beam line
 - Spectrometer
 - High resolution & Lager acceptance spectrometer
 - Experimental feasibility being checked by simulation
 - Mass resolution
 - Background study
 - Decay measurement to help missing mass measurement
- Systematic study of charmed baryons at J-PARC
 - Excitation energy, production, decay
 - With strangeness sector

A heavy quark differentiates diquark motions λ and ρ modes are distinct ~ *isotope shift*

Charmed baryons: Observed

Excited charmed baryons above 0.4 GeV
 ⇒ Search & Study are needed.

Observed charmed baryons

Experimental requirements

***** Assumed production cross section: $\sigma \sim 1$ nb

- $\pi^- + p \rightarrow \Lambda_c^+ + D^{*-}$ reaction @ 13 GeV/c: $\sigma < 7$ nb (BNL data)

Calculated production rates

	p _π =20 GeV/c	Mass (GeV/c)	"ud" isospin factor	Y _c * Spin factor	q _{eff} (GeV/c)	Rate (Relative)
L=0	$\Lambda_c^{1/2+}$	2286	1/2	1	1.34	1
	$\Sigma_c^{1/2+}$	2455	1/6	1/9	1.44	0.03
	$\Sigma_c^{3/2+}$	2520	1/6	8/9	1.45	0.17
L=1	$\Lambda_c^{1/2-}$	2595	1/2	1/3	1.38	0.93
	$\Lambda_c^{3/2-}$	2625	1/2	2/3	1.38	1.75
	$\Sigma_c^{1/2-}$	2750	1/6	1/27	1.49	0.02
	$\Sigma_c^{3/2-}$	2820	1/6	2/27	1.50	0.04
	$\Sigma_{c}^{1/2-2}$	2750	1/6	2/27	1.49	0.05
	$\Sigma_{c}^{3/2-}$,	2820	1/6	56/135	1.51	0.21
	$\Sigma_{c}^{5/2-2}$	2820	1/6	2/5	1.51	0.21
L=2	$\Lambda_c^{3/2+}$	2940	1/2	2/5	1.43	0.49
	$\Lambda_c^{5/2+}$	2880	1/2	3/5	1.42	0.86

Beam intensity

Calculated by Sanford-Wang

- 15 kW loss on Pt (30 kW on 6 cm length)
- Acceptance :1.5 msr%, 133.2 m

\Rightarrow High-rate π beam available: > 10⁷/spill

- K⁻ and p_{bar} beam: > 10⁵ /spill

Backgrounds

- 1. Main background
 - Strangeness production: (K⁺, π^- , π_s^-) in final state
 - 10⁶ time higher than charmed baryon production
- 2. Wrong particle identification
 - Dominant cases: $(\pi^+, \pi^-, \pi_s^-), (p, \pi^-, \pi_s^-)$ \circ Miss-identification of K⁺
- 3. Associated charm production: D*-
 - Highly excited D*
 - DD_{bar} pair
 - Charmonium

Backgrounds

- 1. Main background
 - Strangeness production: (K⁺, π^- , π_s^-) in final state
 - 10⁶ time higher than charmed baryon production
- 2. Wrong particle identification: 6% of Main BG
 - Dominant cases: $(\pi^+, \pi^-, \pi_s^-), (p, \pi^-, \pi_s^-)$

• Miss-identification of K⁺

- 3. Associated charm production: D*-
 - Highly excited D* Contribution (peaking or not)
 - DD_{bar} pair

checked by analysis

- Charmonium

Main background

All events including K^+ , π^- , π^-

* σ_{Total} of π^- p @ 16 GeV/c : 25.7 mb \Leftrightarrow Strangeness production: 3.4 mb

- Background source
 - $K^{*0}(\to K^+, \pi^-) + \pi^-$
 - $KK_{bar} (K^*K^*_{bar}) \text{ production} + \pi^-$
 - $Y K^+ + \pi^-$
 - Non-resonant multi-meson production

- Background generation Y. Nara et.al. Phys. Rev. C61 (2000) 024901
 - JAM (Jet AA Microscopic transport model)
 - Include many elementary processes in low-high energy
 - Use K⁺ and π^- distribution from π^- p reaction at 20 GeV/c
 - $\sigma = 2.4 \text{ mb for } (K^+, \pi^-, \pi^-)$
 - ss_{bar} production multiplicity: ~1 (2 K⁺event: ~3%)

Charged track multiplicity

of charged track $\pi^- p \rightarrow X @ 16 \text{ GeV/c}$

Track数	2T [mb]	4T [mb]	6T [mb]	8T [mb]	10T [mb]	Total [mb]
Data	9.78	9.02	4.85	1.37	0.2	25.22
JAM	8.03	8.81	6.17	1.42	0.08	24.51
PYTHIA	8.84	9.72	5.21	0.79	0.03	24.59

of charged track $\pi^- p \rightarrow \Lambda + X @ 15 \text{ GeV/c}$

Track数	2T [µb]	4T [µb]	6T [µb]	8T [µb]	10T [µb]	Total [µb]
Data	466	480	200	26.6	1.8	1174
JAM	363	482	155	9.00	0.02	1009
PYTHIA	509	549	127	5.84	0.05	1191

of charged track $\pi^- p \rightarrow K^0 + X @ 15 \text{ GeV/c}$

Track数	2T [µb]	4T [µb]	6T [µb]	8T [µb]	10T [µb]	Total [µb]
Data	714	787	266	45.2	2.4	1815
JAM	810	1069	345	23.8	0.2	2248
PYTHIA	960	1203	302	13.1	0.1	2478

Charged track multiplicity

Reliability of the BG simulation

Background simulation by JAM (PYTHIA)
 ⇒ Shapes and yields were well reproduced.

Y. Nara et.al., Phys. Rev. C61 (2000) 024901

-Event counts in D* mass and K*⁰ cross section: ~30% ambiguity

Background spectra

• Events around D⁰ and D* mass (Q-value) region selected

- **D**⁰ mass(1.865): 1.852-1.878 GeV/c² (26 MeV)
- Q-value(5.9) (Q = M(K⁺ $\pi^{-}\pi^{-}$)-M(K⁺ π^{-})-M_{π}): 4.3-7.5 MeV (3.2 MeV)
 - $\circ~$ For removing momentum resolution of p_K and p_π

Background reduction: D* tagging

***** Both \overline{D}^0 mass and Q-value region selected by narrow gate \Rightarrow More than 10⁶ reduction for background events

Background reduction

Background reduction

Background reduction

Total cross section @ 20 GeV/c: 25.1 mb

- (K⁺, π^- , π^-) final state: 2.43 mb
- D⁰ mass region (1.852–1.878 GeV/c²): 21.7 μb (1/112)
- D^{*-} tagging (Q = 4.3-7.5 MeV): 50.2 nb (1/434)
 - Old experiment: 1/100 by 4 time worse resolution
- Acceptance: 1.2 nb (1/43)
 - Detector: 50% for D* tagged events
 - \odot Momentum cut (p_{K+} & p_{π-} > 2.0 GeV/c, Soft π⁻ = 0.5–1.7 GeV/c)
- Total reduction: $112 \times 434 \times 43 \sim 2 \times 10^{6}$

S/N ratio

Background reduction

- Total reduction: $112 \times 434 \times 43 \sim 2 \times 10^6$
- Event selection: 16
- Signal: 12 nb (1 nb×12 states)
 - B.R. $\times 0.026 \Rightarrow 0.312$ nb
 - Event selection $\times 1/2 \Rightarrow 0.156$ nb
- BG: 2.43 mb ((K⁺, π⁻, π⁻) final state)
 - 0.081 nb
- \Rightarrow S/N = 2.1 for D⁰ and D* mass region

S/N estimation

- Signal: 12×1000 = 12000 counts
- BG: 12000/2.1 = 5700 counts
- ⇒ Mass region: 2.2-3.4 GeV ⇒ ~5 counts/MeV
- \Rightarrow S/N = 1000/150 ~ 7
 - 30 MeV region: 150 counts
- $S/\sqrt{N} = 100/\sqrt{1000} \sim 3$
 - Signal: σ = 0.1 nb, Γ = 100 MeV: \Rightarrow 100 counts
 - BG: 200 MeV region \Rightarrow 1000 counts

Expected spectra: $\sigma = 1$ nb

Known Mass & Width in PDG

- Background study by the JAM code
- \Rightarrow Reduction by D* tagging + Event selections
 - $D^0 \rightarrow K^+ \pi^-$ decay angle cut, production angle cut

* Achievable sensitivity of 0.1–0.2 nb: $(3\sigma \text{ level}, \Gamma < 100 \text{ MeV})$

Decay measurement strongly assists the missing mass spectroscopy.

- Branching ratios: $\Gamma(\Lambda_c^* \to p D) / \Gamma(\Lambda_c^* \to \Sigma_c \pi)$
- Angular distribution

***** $D^0 \rightarrow K^+ \pi^- (3.88\%), D^0 \rightarrow K^+ \pi^- \pi^+ \pi^- (8.07\%), D^0 \rightarrow K_S^0 \pi^+ \pi^- (2.82\%)$ can be used.

Decay measurement strongly assists the missing mass spectroscopy.

- Branching ratios: $\Gamma(\Lambda_c^* \to p D) / \Gamma(\Lambda_c^* \to \Sigma_c \pi)$
- Angular distribution

***** $D^0 \rightarrow K^+ \pi^- (3.88\%), D^0 \rightarrow K^+ \pi^- \pi^+ \pi^- (8.07\%), D^0 \rightarrow K_S^0 \pi^+ \pi^- (2.82\%)$ can be used.

Old experiments

Reference	Method	Beam [GeV/c]	Reaction channels	Upper Limit ×BR [μb] (95% C.L.)
C. Baltay et al. PRL 34, 1118 (1975)	SLAC Bubble	15	$\pi^+ p \rightarrow \Sigma_c^{++} \overline{D}^0$ (Exclusive)	3.0 (M _Σ : 1.5-4.0 GeV/c ²)
B. Ghidini et al. NPB 111, 189 (1976)	CERN PS Spectroscopy	19	$\pi^{-} p \rightarrow \Lambda_{c}^{+} \frac{D^{-}}{D^{0}}$ $\pi^{-} p \rightarrow \Sigma_{c}^{0} \overline{D}^{0}$ (Exclusive)	$0.08 \\ 0.07 \\ M_D > 1.5 \text{ GeV/c}^2 \\ M_C > 2.0 \text{ GeV/c}^2$
S.U. Chung et al. PRL 48, 785 (1982)	BNL Spectroscopy	16	$\pi^- p \rightarrow \Lambda_c^+ D^{*-}$ (Inclusive)	0.13 (D* inclusive) 0.07 (Ch. exclusive)
J.H. Christenson et al. PRL 55, 154 (1985)	BNL Spectroscopy	13	$\pi^- p ightarrow \Lambda_c^+ D^{*-} \ \pi^- p ightarrow \Sigma_c^+ D^{*-} \ (Inclusive)$	7 nb (σ) M _{D*} : 1.99-2.03 GeV/c ² , Λ _c ⁺ ,Σ _c ⁺ mass region

No old experiment observed charmed baryons.

- Beam momentum: 10–20 GeV/c region

Old experiments

BNL experiment in 1983

• $\pi^- p \rightarrow \Lambda_c^+ D^{*-} @ 13 \text{ GeV/}$ - $N_{\pi} = 3 \times 10^{12}$ - $\Delta M = 20 \text{ MeV}$

***** No peak structure \Rightarrow Upper limit: $\sigma = 7$ nb

Old experiments

	Beam [GeV/c]	Beam [/spill]	РоТ	Accep tance	High rate	HS DAQ	PID	Beam Resol.	Mass Resol.	D* detection	S/N method
J-PARC	15-20	0	0	0	0	0	0	0	0	0	0
BNL 1	13	0	Δ	×	×	×	×	0	0	0	×
BNL 2	16	×	×	0	×	×	×	×	Δ	0	×
CERN 1	19	×	×	0	×	×	×	×	×	×	×

- Yield ⇔ Cross section: level of nb
 - Both beam & acceptance
 - High-rate detectors & High-speed DAQ
 - High performance PID system
- Experimental techniques
 - Beam & D mass resolution
 - Background reduction: D* detection
 - Study for good S/N

* Design of experiment with proper conditions needed

Comparison with old experiments

	Beam [GeV/c]	Target [g/cm ²]	PoT [T]	Accep. ×ε _{eff} [%]	$\frac{\Delta P_{B}}{P_{B}}$	ΔM _D [MeV]	ΔM _{D*} [MeV]	∆MM [MeV]	S/N by D mass resol.	Counts for 1 nb
J-PARC	20	4.0	86.4	35	0.1	5.0	0.6	10	3.3 ×8	> 2000
BNL 1	13	7.1	3.0	1	0.25	~10	~1	25	1	2
BNL 2	16	4.2	<1	2	?	~10	~1	45	1	<1

BNL: J.H. Christenson et al. PRL 55, 154 (1985)

- -13 GeV/c , Acceptance: $\pi^- p \rightarrow \Lambda_c + D^{*-}$, exp(bt) distribution: b = 2.0 GeV⁻²
- D* tagging was used.

* Experimental qualities drastically improved.

- Yield: 30(beam) × 35(acceptance & ε_{eff}) = 1050
- S/N: 3.3(resolution) × 8(event selection) = 26

Expected spectrum: Comparison

D* tagging + Event selections

- $D^0 \rightarrow K^+ \pi^-$ decay angle cut, production angle cut

 \Rightarrow S/N improvement: 50–100

Mass resolution × ~3.3, event selections × ~8, PID × 2–4

* Yield: 30(beam) × 35(acceptance & ε_{eff}) = 1050

Strangeness baryons

* Yield: ~5.0×10⁵ /day @ 1 μb

- 4 g/cm², 6×10⁷/spill, 50% acceptance, 50% efficiency (DAQ, PID, Analysis)

• Λ, Σ^0 baryons: $\sigma \sim 1-100 \ \mu b$

- $\pi^- + p \rightarrow \Lambda^* + K_S^{\ 0}, K_S^{\ 0} \rightarrow \pi^+ + \pi^-$
 - Yield: $\sigma \times 0.5 \times 0.70$
 - K⁰_{bar} background & 10 times higher pion production rate
- $\pi^- + p \rightarrow \Lambda^* + K^{*0}, K^{*0} \rightarrow K^+ + \pi^-$
 - Yield: $\sigma \times 0.67$ (0.4 cross section compared with K⁰ production channel)
 - Strangeness tagged: Smaller background from K⁰ channel
 - Mass resolution: 20–40 MeV @ 20 GeV/c beam

• Ξ^- baryons: $\sigma \sim 0.1-10 \ \mu b$

 $- \quad \pi^- + p \longrightarrow \Xi^* + K^{*0} + K^+, \, K^{*0} \longrightarrow K^+ + \pi^-$

- Inclusive Ξ^- production: 20–30 µb @ 15-20 GeV/c π^- p reaction
- Strangeness tagged: Small multi-strangeness production background
- Same trigger scheme: By-products in charm experiment
- Mass resolution: 10–20 MeV @ 20 GeV/c beam

• Ω^- baryons: $\sigma \sim 0.01-1 \ \mu b$

- $K^- + p \rightarrow \Omega^* + K^{*0} + K^+, K^{*0} \rightarrow K^+ + \pi^-$
 - $\circ~\Omega$ production: ~1 µb @ 4 GeV/c K⁻ p $\rightarrow \Omega^-$ K⁰ K⁺ reaction
 - Same trigger scheme: By-products in charm experiment
 - Mass resolution: 10–20 MeV @ 20 GeV/c beam

Excitation mode

- Heavy Q: λ and ρ -mode
- \Rightarrow M₀ dependence of excitation spectrum
 - Charmed baryons: Y_c*
 - Hyperons: Y*

***** spin-spin:
$$H = H_0 + V_c + V_{ss}$$

$$- V_c = k/2 \sum r_i^2$$
$$- V_{ss} = c_s \sum \frac{\sigma_i \cdot \sigma_j}{m_i m_j} \delta(r_{ij})$$

• L=1 excited states: Confinement & spin-spin interaction

• L=1 excited states: Confinement & spin-spin interaction

Threshold			JP	rat in g	Width [MeV]	→NK [%]	→ Λ π [%]	→Σπ [%]	
		Σ(1940)	3/2-	4*	220	<20	seen	Seen	
		Σ(1915)	5/2+	3*	120	5-15	seen	Seen	
	Λ(1890)		3/2+	4*	95	20~35		3~10	
		Σ(1880)	1/2+	2*	220?				
K*N(1830)		Σ(1840)	3/2+	1*	120?				
	Λ(1830)		5/2—	4 *	95	3~10	35~75		
	Λ(1820)		5/2+	4*	80	55~65	8~14		
	Λ(1810)		1/2+	3*	150	20~50	10~40		
	Λ(1800)		1/2-	3*	300	25~40	Seen		
$\Sigma_{m}(1740)$		Σ(1775)	5/2—	4*	120	37~43	16-25		
211(1/40)		Σ(1750)	1/2-	3*	90	10~40	?		(Ση)15~55
		Σ(1690)	??	2*	?	?	?		
	Λ(1690)		3/2-	4*	60	20~30	20~40		
An(1663)		Σ(1670)	3/2-	4*	60	7~13	35~75		
KN(1432)	Λ(1670)		1/2-	4*	35	20~30	25~55		
Σπ(1330)		Σ(1620)	1/2-	1*	?	?	?		
Σ * π(1520)		Σ(1580)	3/2-	1*	?	?	?		
(_0_0)				14	10	45.4	10.1		

Level Structure of double-strange baryons

• λ and ρ mode excitations interchanged

Decay property

Ξ (ρ , λ -mode excitations w/Vss)

Ξ in PDG

			JP	rating	Width [MeV]	Ξπ [%]	ΛK [%]	ΣK [%]	
		Ξ(2500)	??	1*	150?				
		Ξ(2370)	??	2*	80?				ΩK~9±4
	OK(2166)	Ξ(2250)	??	2*	47+-27?				
		Ξ(2120)	??	1*	25?				
		Ξ(2030)	>=5/2?	3*	20+15_5	small	~20	~80	
ΣK*(1983)	ΛK*(1908)	Ξ(1950)	??	3*	60+-20	seen	seen		
Σ*K(1878)		Ξ(1820)	3/2-	3*	24 ⁺¹⁵ -10	small	Large	Small	
	ΣΚ(1685)	Ξ(1690)	??	3*	< 30	seen	seen	seen	
Ξ*π(1665)	AK(1610)	Ξ(1620)	??	1*	20~40?				
	$\Xi\pi(1450)$	Ξ(1530)	3/2+	4*	19	100			