Spectroscopic experiments of charmed and strange baryons at J-PARC

K. Shirotori

Research Center for Nuclear Physics (RCNP) Osaka University

16th Hadron Spectroscopy Cafe "Recent hot topics and future prospects of hadron experiments at J-PARC"

20th Jul. 2022

Contents

Introduction

- Motivation
- Diquark correlation
- Spin-dependent forces
- Experiments with high-momentum hadron beam
 - Charmed baryon @ High-p ($\pi 20$) beam line
 - Ξ and Ω baryons @ K10 beam line

• Further studies

• Summary

Hadron Experimental Facility Extension project 3rd white paper, arXiv:2110.04462

How quarks build hadrons ?

***** Dynamics of non-trivial QCD vacuum in low energy regime

- Investigation of effective degrees of freedom and their interactions
- ⇒ Study of excited state by spectroscopy experiment using hadron beam
 - Understand "dynamics" of confined DoF from their "response"

Investigations of hadrons at J-PARC

- Spectroscopy of Heavier flavors for understanding "Baryon system"
 - Charmed baryon (Λ_c / Σ_c) : ud + c
 - Ξ baryons: u/d + ss
 - Ω baryons: sss

⇒ Systematic spectroscopy measurement by high-momentum hadron beam:

Hadron Experimental Facility Extension

- High-p($\pi 20$) beam line: π^- up to 20 GeV/c
- K10 beam line: K⁻ up to 10 GeV/c
- Investigation of exotic states for understanding "Exotic property"
- \Rightarrow Specific measurement by dedicated experiments
 - Mass and width: e.g., narrow Λ^* , D_{30} (Non-strange dibaryon)
 - Spectrum line shape: e.g., $\Lambda(1405) \Rightarrow K_{bar}N$ structure
 - Spin/parity: e.g., narrow Λ^*
 - Number of quarks: e.g., $\Lambda(1405)$ by quark counting rule (5q \Leftrightarrow 3q)

From F. Sakuma

High-momentum hadron beam lines: $\pi 20$ and K10

- High-p($\pi 20$): Primary proton $\Rightarrow 2^{ndary}$ beam (unseparated)
 - High intensity: >10⁷ /spill for $\pi^-(K^-, p_{bar}: 1-2\%)$ up to 20 GeV/c

K10

High-p (π20)

- Production target and 0-degree beam extraction
- High resolution: $\Delta p/p = 0.1\%(\sigma)$
 - Dispersion matching: the position corresponds to the momentum
- K10 beam line: K⁻ beam
 - High intensity: >10⁶ /spill for K⁻ up to 10 GeV/c
 - High-purity: $K : \pi \sim 1 : 2$
 - Radio Frequency(RF) separator
 - High resolution: $\Delta p/p = 0.1\%(\sigma)$
 - Beam spectrometer: QQDDQ system

*Beam line name: OXX

O: Main beam particle XX: Maximum beam momentum

Introduction

Baryon structure in the low-energy regime

• Dynamics of non-trivial QCD vacuum ⇒ Dynamics of Effective DoF

- Short-range spin-spin correlation: Diqaurk correlation
- Origin of spin-dependent forces: Systematics of spin-spin/spin-orbital forces
- Quark motions in "quark core": Size of "core" and "cloud"

*Instanton: A topological object of gluon that mediates the $U_A(1)$ breaking interaction proposed by Kobayashi, Maskawa, and 't Hoot

Baryon spectroscopy at J-PARC

- Dynamics of non-trivial QCD vacuum in baryon structure
 - Massive quarks and NG bosons (effective degrees of freedom)
 - Their dynamics has not been understood.

• *c*- and *s*-baryon spectroscopy: Disentangle diquark correlation and spin-dependent forces

* Ξ and Ω baryons @ K10

- Ξ : *us/ds* diquark correlation
- $\boldsymbol{\Omega}:$ Suppression of diquark correlation

***** Both $\pi 20$ and K10

- Spin-dependent forces
- Internal quark motion

Studies of diquark correlation: J-PARC E50

"Excitation mode": λ and ρ modes in heavy baryon excited states (*q*-*q* + Q system) \Rightarrow Diquark correlation: *q*-*q* isolated and develops

***** Dynamical information: Production rates and absolute decay branching ratios

Production rates by hadronic reaction

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section(0°): Overlap of wave function $\rightarrow |R \sim \langle \varphi_f | \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) | \varphi_i \rangle$
 - \Rightarrow Sensitive to excitation modes
 - Large production rate of highly excited states
 - Both one- and two-quark processes ($\sigma_{\Lambda}:\sigma_{\Sigma}=2:1$)

Two-quark process

Mom. Trans.: *q_{eff}*~1.4 GeV/c α ~0.4 GeV ([Baryon size]⁻¹)

 $I_L \sim (q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)$

* λ -mode states w/ finite L are populated.

One-quark process

***** Comparable p-mode states are expected.

S.H. Kim, A. Hosaka, H.C. Kim, H. Noumi, K. Shirotori PTEP 103D01 (2014).

Production rates by hadronic reaction

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section(0°): Overlap of wave function $\rightarrow R \sim \langle \varphi_f | \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) | \varphi_i \rangle$
 - \Rightarrow Sensitive to excitation modes
 - Large production rate of highly excited states
 - Both one- and two-quark processes ($\sigma_{\Lambda}:\sigma_{\Sigma}=2:1$)

 $|I_L \sim |(q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)|$

Decay properties of charmed baryon

- Decay measurement: $\Gamma_{\pi\Sigma c} \Leftrightarrow \Gamma_{pD}$ • $\pi^{-+} \Sigma_{c}^{++}, \pi^{+} + \Sigma_{c}^{0}$
 - $p + D^0$
- \Rightarrow Absolute value of branching ratios
 - Complementary to high-energy experiments

- Studies by pionic decays: $\Lambda_c^* \rightarrow \Sigma_c \pi \rightarrow \Lambda_c \pi \pi$
 - $\Lambda_{c}(2595), \Lambda_{c}(2625), \Lambda_{c}(2765), \Lambda_{c}(2880), \Lambda_{c}(2940)$
 - Essential role of Heavy Quark Symmetry

(H. Nagahiro et al., Phys. Rev. D 95, 014023 (2017))

Mass and width of ρ mode Λ_c^{*}(1/2⁻) ⇒ How the U_A(1) anomaly works in baryons ?
Decay width suppression depending on its mass (Λ_cη, Σ_cππ threshold)

Heavy flavors for revealing diquark correlation

***** Systematic studies for baryon systems with heavier flavors: *c* & *s*

- Charmed baryon: Disentangle *ud* diquark correlation
 - Comparison with hyperons (Λ/Σ) : *ud* + s system
- Ξ baryon: *us/ds* diquark correlation \Rightarrow Flavor dependence
- Ω baryon: Suppression of diquark correlation

- Ω baryon: Suppression of diquark correlation \Rightarrow "Reference"
 - Suppression of spin-dependent forces and pion cloud
 - \Rightarrow Investigation of origin of spin-dependent forces and quark motion

*Ξ(1800)⁰(1/2⁻): Assumed for simulation

Role of Ω baryon: Single flavor system

- $\Omega(sss)$ baryon: Flavor symmetric system
- Free from Pion Cloud: Investigation of "Quark core" region (Non-perturbative region)
- \Rightarrow Origin of spin-dependent forces and quark motion

*****Long-standing problems

- Too large α_s^{ss} (>1) of SS force, Missing LS force, Roper-like resonances
- ⇒ In terms of One Gluon Exchange(OGE), Instanton Induced Interaction(III) and Pion cloud

Spin-dependent forces

- Investigate origin of spin-dependent forces and quark motion
 - In terms of One Gluon Exchange(OGE), Instanton Induced Interaction(III) and Pion cloud
- Systematics of spin-orbital interaction
 - Disappears in N^{*} (OGE/III cancelled)
 - Appears in Λ_c^{*} , Ξ_c^{*} and Λ_b^{*} (OGE only)
- Ω^* baryon
 - Flavor-symmetric system
 - Free from pion cloud
 - III forbidden
- ⇒ LS splitting: No OGE&III(2BF)
 - $\Omega(2012)^{-}(3/2^{-}?) \Leftrightarrow \Omega^{*-}(1/2^{-}?)$
 - Degenerate ?
 - $\Xi(1820)^{-}(3/2^{-}?) \Leftrightarrow \Xi^{*-}(1/2^{-}?)$
 - LS partners (L=2 states)

Systematics of the spin-orbit (LS) force

Roper-like resonances

- Investigate origin of spin-dependent forces and quark motion
 - In terms of One Gluon Exchange(OGE), Instanton Induced Interaction(III) and Pion cloud
- Systematics of Roper-like states (Radial excitation 2S states)
 - Small excitation energy and wide width
 - Mass universality ?
 - What does determine its width ?
- Ω^* baryon
 - Flavor-symmetric system
 - Free from pion cloud
 - \Rightarrow No contribution from pion cloud
- * Width tells quark motion.: $\Gamma \sim \langle p_q \rangle$
- \Rightarrow Size of "quark core": $\langle r_q \rangle \sim 1 / \langle p_q \rangle$
 - Roper-like state: Where is it ?

19

Baryon spectroscopy at J-PARC

- Dynamics of non-trivial QCD vacuum in baryon structure
 - Massive quarks and NG bosons (effective degrees of freedom)
 - Their dynamics has not been understood.

• *c*- and *s*-baryon spectroscopy: Disentangle diquark correlation and spin-dependent forces

* Ξ and Ω baryons (a) K10

- Ξ : *us/ds* diquark correlation
- $\boldsymbol{\Omega}:$ Suppression of diquark correlation

***** Both $\pi 20$ and K10

- Spin-dependent forces
- Internal quark motion

Charmed baryon spectroscopy @ High-p (π20)

High-momentum hadron beam lines: $\pi 20$ and K10

22

K10

High-p (π20)

- High-p($\pi 20$): Primary proton $\Rightarrow 2^{ndary}$ beams (unseparated)
 - High intensity: >10⁷ /spill for $\pi^-(K^-, p_{bar}: 1-2\%)$ up to 20 GeV/c
 - Production target and 0-degree beam extraction
 - High resolution: $\Delta p/p = 0.1\%(\sigma)$
 - Dispersion matching: the position corresponds to the momentum
- K10 beam line: K⁻beam
 - High intensity: >10⁶ /spill for K⁻ up to 10 GeV/c
 - High-purity: $K : \pi \sim 1 : 2$
 - Radio Frequency(RF) separator
 - High resolution: $\Delta p/p = 0.1\%(\sigma)$
 - Beam spectrometer: QQDDQ system

*Beam line name: OXX

O: Main beam particle XX: Maximum beam momentum

Experiment: Missing mass method

K⁺ & π⁻: 2–16 GeV/c π⁻ from D^{*-}: 0.5–1.7 GeV/c

- $\pi^{-} + p \rightarrow D^{*-} + Y_{c}^{*+} \text{ reaction } @ 20 \text{ GeV/c}$ 1) Missing mass spectroscopy: Y_{c}^{*+} mass (>1 GeV excited states) • $D^{*-} \rightarrow \overline{D}^{0} \pi_{s}^{-} \rightarrow K^{+} \pi^{-} \pi_{s}^{-} : D^{*-} \rightarrow \overline{D}^{0} \pi_{s}^{-} (67.7\%), \overline{D}^{0} \rightarrow K^{+} \pi^{-} (3.88\%)$
 - 2) Decay measurement: Absolute B.R. and angular distribution
 - Decay particles (π^{\pm} & proton) from Y_c^*

A spectrometer for charmed baryon spectroscopy

HQ doublet

- Known states in PDG and background by hadronic reaction code
- **Production rates** tell excitation mode of excites states. $\Rightarrow \lambda/\rho$ mode assignment
 - λ mode enhanced + Small production rate of ρ mode (0.2 nb w/ Γ =100 MeV)
 - Angular distribution (*t*-dependence: $d\sigma/dt$) contains structure information.

- **Production rates** tell excitation mode of excites states. $\Rightarrow \lambda/\rho$ mode assignment
 - λ mode enhanced + Small production rate of ρ mode (0.2 nb w/ Γ =100 MeV)
 - Angular distribution (*t*-dependence: dσ/d*t*) contains structure information.

- Production rates tell excitation mode of excites states. $\Rightarrow \lambda/\rho$ mode assignment
 - λ mode enhanced + Small production rate of ρ mode (0.2 nb w/ Γ =100 MeV)
 - Angular distribution (*t*-dependence: $d\sigma/dt$) contains structure information.

Decay measurement: $\Lambda_c(2940)^+ \rightarrow \Sigma_c^{++/0} \pi^{-/+}$ and p D⁰

Decay measurements can also give us information of excited state properties.

• Absolute branching ratios: $\Gamma(\Lambda_c^* \to p D) \Leftrightarrow \Gamma(\Lambda_c^* \to \Sigma_c \pi) \Rightarrow \lambda/\rho$ mode assignment

• Dynamical information: Production rates & Absolute decay branching ratios $\Rightarrow \underline{1^{st} \text{ identification of } \lambda/\rho \text{ mode } \text{for revealing } ud \text{ diquark correlation}$

E and Ω baryon spectroscopy @ K10

Experimental situations: Ξ^*

	\mathbf{J}^{P}	rating	Width [MeV]	Ξπ [%]	ΛK [%]	ΣK [%]	ΩK [%]	PRL51 (19
Ξ(2500)	??	1*	150?					
Ξ(2370)	??	2*	80?				~9±4	
Ξ(2250)	??	2*	47+- 27?					
Ξ(2120)	??	1*	25?					
Ξ(2030)	>=5/2?	3*	20^{+15}_{-5}	small	~20	~80		
Ξ(1950)	??	3*	60 ± 20	seen	seen			
Ξ(1820)	3/2-	3*	24^{+15}_{-10}	small	Large	Small		
Ξ(1690)	??	3*	< 30	seen	seen	seen		
Ξ(1620)	??	1*	20-40?				Existence	e is certain : 2
Ξ(1530)	3/2+	4*	10	100			Need con	firmation : 4
• 11	states	were	repor	ted.			Evidence Evidence	is fair : 2 is poor : 3

• Quark Model prediction \Rightarrow 44 states up to 2.3 GeV

Measured Ω^{*-} states in PDG

2021 Review of Particle Physics.

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

Ω BARYONS (S = -3, I = 0)

 $\Omega^- = s \ s \ s$

\varOmega^{-}		$3/2^+$	****				
$\Omega(2012$)-	?-	***				
0(0050))-	-	***				
32(2250)						
$\Omega(2380$	$)^{-}$		**				
$\Omega(2470$)_		**				
	/						
****	Existence is cortain, and properties are at least	fairly avalarad					
	Existence is certain, and properties are at least fainy explored.						
***	Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.						

- Most of spins/parities/decay branches have not been determined yet.
- $\Omega(2380)$ and $\Omega(2470)$ are discarded from PDG table.

Experimental situations

• Need data by experiment with a modern technique

 \Rightarrow High-performance facility and suitable experimental setup \Rightarrow K10

• High-intensity K⁻ beam and large acceptance spectrometer

High-momentum hadron beam lines: $\pi 20$ and K10

36

K10

High-p (π20)

- High-p($\pi 20$): Primary proton $\Rightarrow 2^{ndary}$ beam (unseparated)
 - High intensity: >10⁷ /spill for $\pi^-(K^-, p_{bar}: 1-2\%)$ up to 20 GeV/c
 - Production target and 0-degree beam extraction
 - High resolution: $\Delta p/p = 0.1\%(\sigma)$
 - Dispersion matching: the position corresponds to the momentum
- K10 beam line: K⁻ beam
 - High intensity: >10⁶ /spill for K⁻ up to 10 GeV/c
 - High-purity: $K : \pi \sim 1 : 2$
 - Radio Frequency(RF) separator
 - High resolution: $\Delta p/p = 0.1\%(\sigma)$
 - Beam spectrometer: QQDDQ system

*Beam line name: OXX

O: Main beam particle XX: Maximum beam momentum

K10 beam line and spectrometer

- K10 beam line
 - High-intensity high-momentum K⁻ beam with high purity
- Spectrometer (under designing)
 - Multi-purpose system to detect Ξ/Ω baryon production events

Experimental method: $\boldsymbol{\Xi}$ and $\boldsymbol{\Omega}$ baryon spectroscopy

- Reaction: $K^- p \rightarrow K^+ \Xi^{*-} / K^- p \rightarrow K^{*0} \Xi^{*0}$
 - Beam: 5–8 GeV/c
- Missing mass: K⁺ / K^{*0}
 - K^+ or K^{*0} detection \Rightarrow s = -2 tagging
- Decay measurement: $K^- / \pi^{-/+}$
 - Decay products obtained as missing mass
 - $\Lambda/\Sigma^0/\Sigma^+$ and $\Xi^{0/-}$

- Reaction: $K^- p \rightarrow \Omega^{*-} K^{*0} K^+$ • Beam: 7–10 GeV/c
- Missing mass: K^{*0} & K⁺
 - K^{*0} detection \Rightarrow s = -3 tagging
- Decay measurement: K⁻ / π^+ π^-
 - Decay products obtained as missing mass
 - $\Xi^{(*)0}$ and Ω^-

***** High momentum transfer = Highly excited state

Expected mass spectrum: $K^{-}\,p \rightarrow K^{*0}\,\Xi^{*0}$

- $\sigma_{G.S.} = 2 \ \mu b$ @ 8 GeV/c assumed $\Rightarrow 5.3 \times 10^6$ events (30-days beam time)
 - Excited states: Scaling old data (Jenkins et al., PRL51, 951 1983)
- Mass resolution: $\Delta M \sim 7 \text{ MeV}(\sigma) < \text{Width (several 10 MeV)}$
- Background reduction by decay event selection: $\Xi^{*0} \rightarrow \Xi^{-} \pi^{+} (B.R. = 0.1) \Rightarrow S/N \times 30$

us/ds diquark correlation: ρ/λ mode assignment

- Combining J^P, production rates and decay branching ratios
 - Assigned by J^P from decay measurement (Several 10⁴ events w/o uncertainty)
 - Production rates: ρ -mode LS partner = 1:2 @ L = 1 (L:L+1 relation)
 - Decay branching ratios: $\Gamma(\Xi^* \to \Lambda/\Sigma \text{ K}^-) \Leftrightarrow \Gamma(\Xi^* \to \Xi \pi)$
- ***** High-statistic data are essential.: K⁻ beam intensity @ K10

Expected mass spectrum: $K^{-} \, p \rightarrow \Omega^{*-} \, K^{*0} \, K^{+}$

Ω*- events: 3.3×10⁵ events @ 100 days (63 nb: Same cross section for all resonances)
Mass resolution: ΔM ~5 MeV < Width (several 10 MeV)

• Background reduction by decay event: $\Omega^{*-} \rightarrow \Xi^{*0} \text{ K}^{-}(\text{B.R.} = 0.3) \Rightarrow S/N \times 10$

Expected mass spectrum: $K^- p \rightarrow \Omega^{*-} K^{*0} K^+$

Ω^{*-} events: 3.3×10⁵ events @ 100 days (63 nb: Same cross section for all resonances)
Mass resolution: ΔM ~5 MeV < Width (several 10 MeV)

• Background reduction by decay event: $\Omega^{*-} \rightarrow \Xi^{*0} \text{ K}^{-}(\text{B.R.} = 0.3) \Rightarrow S/N \times 10$

Relation between Ξ and Ω baryons: Production process

Relation between Ξ and Ω baryons: Decay process

45 **Relation between** Ξ and Ω baryons: Decay process $\Xi^{*0} \rightarrow \Omega^{*-} \operatorname{K}^+, \Omega^{*-} \rightarrow \Xi^0 \operatorname{K}^-$ □*0 2900 -Investigation of both Ξ and Ω baryons at K10 beam line • Simultaneous data taking by same beam momenta • $K^- p \to \Xi^{*0} K^{*0} \& K^- p \to \Omega^{*-} K^+ K^{*0} @ 7-10 \text{ GeV/c}$ * Relation between Ξ and Ω in production and decay processes is important for J^{P} determination and ρ/λ assignment. **E(1020** • Cascade decay chain 3/2+ 1700 GS \Rightarrow $\Xi^{*0} \rightarrow \Omega^{*-} K^{+}, \Omega^{*-} \rightarrow \Xi^{0} K^{-}$ $\Xi(1530) \frac{3/2^+}{}$ Ω • Properties (J^P) of Ω^* by decay angular 1500 GS <u>1/2</u>+ correlation 1300

Ξ

Properties of initial Ξ^{*}(J^P) to be determined as well

Paucity of data: $\boldsymbol{\Xi}$ and $\boldsymbol{\Omega}$ excited states

- Many excited states predicted by the quark model have not been found.
- Spin/Parity: Most of spins and parities have not been determined.
 - LS partners and Roper-like resonances have not been established.
- Diquark correlation: No ρ/λ mode assignment
- Production mechanism and cross section of hadronic reaction (K⁻ beam)
 - *u*-channel and 2-step for Ξ^* ? (K⁻ p $\rightarrow \Xi^{*0}$ K⁺)
 - Doorway from Ξ^* for Ω^* ? $(K^{\scriptscriptstyle -}\,p\to\Omega^{*\scriptscriptstyle -}\,K^{\scriptscriptstyle +}\,K^{*0})$
- Decay properties: Why width seems to be narrow ?
 - What determines decay width and branching ratio ? (small coupling to pion ?)
- Exotic states: Not well studied
 - ex. $\Xi(1620)$, $\Xi(1690)$ and $\Omega(2012)$?

Further studies

Baryon spectroscopy at J-PARC: $\pi 20$ and K10

- 1. Systematic measurements: Excited states properties of $\Lambda_c / \Sigma_c (\Lambda / \Sigma), \Xi, \Omega$
 - Mass, width, spin-parity, decay branching ratio, production rate
- 2. λ/ρ mode assignment by J^P, production rates and decay branching ratios
 - Determination of LS partner (HQ doublets) in L=1 and 2... states
 - Production rate of LS partner = L: L+1
- \Rightarrow Establish diquark correlation as building block of baryon
 - A starting point toward understanding of dense quark matter

Baryon spectroscopy at J-PARC: $\pi 20$ and K10

- 3. Abundant data of excited states (A few MeV accuracy of mass and width)
 - Information of interactions: More than 10 MeV splitting
 - Systematics by changing quark configuration in $\Lambda_c/\Sigma_c, \Xi, \Omega$
- ⇒ Systematics description of excited state properties over different flavors
- by quarks and diquark correlation: Effective theory based on QCD
- ⇒ <u>Understand dynamics of non-trivial QCD vacuum</u>

Baryon Spectroscopy

• **Theory:** excited states by effective theories with their parameter origins in QCD, lattice and analytic methods

Understanding of exotic states

- Properties of exotic states (Mass, Γ, J^P, production)
- Role of effective degrees of freedom (Hadron/Quark DoF)
- \Rightarrow Links to systematic studies of heavy baryons

★How exotic hadrons emerge ? ⇔ Dynamics of Effective DoF

- Molecule (Colorless = hadron DoF) ⇒ Threshold region ?
- Multi-quark (Colorful = diquark/gluon DoF) ⇒ ?

⇒ Mixed states (Both Colorless and Colorful) ⇒ Threshold region ?

Investigations of exotic states

- Exotic properties of observed states
 - Mass and width
 - Different mass predicted from quark model
 - Narrow width
 - Spectrum line shape
 - Dynamically generated hadron molecule
 - Resonance or cusp ?
 - Spin/parity
 - Essential information to reveal internal structure
 - Number of quarks
 - Only quark counting rule by high-energy reaction
- ⇒ Specific measurements by dedicated experiments
 - Reaction control: Reaction modes, momentum transfer and scattering angle
 - High-resolution system: Direct measurement of width and precise line shape
 - Large coverage system: Decay measurement (PWA is ideal...)
 - High-energy beam: Response of differential cross section (quark counting rule)

• Production and decay rates

⇔ Difference from systematics ?

⇔ Systematics depending on internal structure (mixed state) ?

Summary

- How quarks build hadrons $? \Rightarrow$ Dynamics of non-trivial QCD vacuum in baryon structure
 - c- and s-baryon spectroscopy: Disentangle diquark correlation and spin-dependent forces
- Diquark correlation: Effective degrees of freedom
 - Charmed baryon: Disentangle *ud* diquark correlation
 - Ξ baryon: Systematics of *us/ds* diquark correlation
 - Ω baryon: Suppression of diquark correlation
- Spin-dependent forces and quark motion
 - Systematic of Λ_c / Σ_c , Ξ , Ω systems
 - Role of Ω : Clear extraction due to free from pion cloud
- J-PARC facility: High-intensity & High-momentum hadrons beams
 - High-p($\pi 20$): Charmed baryon spectroscopy via $\pi^- p \rightarrow D^{*-} Y_c^{*+}$
 - K10: $\Xi \& \Omega$ baryon spectroscopy via $K^- p \to K^{*0}/K^+ \Xi^{*0/-}/K^- p \to \Omega^- K^+ K^{*0}$
- \Rightarrow Systematic measurements of excited states properties
 - λ/ρ mode assignment by J^P, production rates and decay branching ratios
- $\Leftrightarrow \textbf{Mechanism of exotic state emergence: Dynamics of Effective DoF}$

***** J-PARC hadron experimental facility provides a unique opportunity for hadron spectroscopy experiment.