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• Meson-Nucleus bound system: 
Mesonic atoms and Mesonic Nuclei

• Hadron physics: Exotic Hadron 

• Pion production in the heavy-ion collision 
with the transport model (AMD+JAM)

- Related to the symmetry energy (EOS)

I would like to understand the various properties of the strong interaction, hadron, 
and in-medium meson by comparing the experimental data and theory.

N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, PRC93 (2016) 044612; 
PRC97(2018) 069902(E); PRC101 (2020) 03407
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Meson-nucleus bound system

2

 Mesonic Atoms: Strong+Coulomb interaction
Pionic atom, Kaonic atom

 Mesonic Nuclei: Strong interaction
K, h, h’, … meson-nucleus

p - meson
mp〜140 MeV

B.E 〜 keV- MeV 

Pionic atom

Coulomb + Strong Interaction

(cf.) Normal atom

me 〜 0.5 MeV
electron

Coulomb Interaction
B.E. 〜 eV

REAL meson exists inside and/or very close to the nuclear surface

Typical energy scale: 

Kaon



Interest and Motivation
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1. Exotic Many Body Physics: 
Interaction, Structure, Formation
Like unstable nuclei, hypernuclei ... etc. 
⇒ Extension of the research area of nuclear physics

2. Meson properties at finite density:
Aspect of QCD symmetries

Density r

Heavy Ion Collision @RHIC, LHC ...

complementary information

Meson –Nucleus Systemr0

Chiral symmetry
Spontaneous, Explicit  
breaking@Vacuum

Partial restoration
@Nuclear density
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How do the hadron properties change 
in the nucleus from the vacuum?



How to observe the exotic atoms (traditional) 
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X-ray spectroscopy (1950s~)

The deeply bound states such as 1s and 2p states in heavy nuclei 
could not be observed because of the absorption
 ``Deeply’’ Bound Pionic Atom

C. Batty, E. Friedman, and A. Gal, 

Phys. Rep. 287(97)385



Difficulity in X-ray spectroscopy
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4f

3d

C.T.A.M. De Laat, et al., Nucl.Phys.A523:453-487,1991.



Structure of the pionic atoms
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 Klein-Gordon equation:

s-wave term p-wave term

Pion-Nucleus Optical Potential ︓

M. Ericson, T. E. O Ericson, Ann. Phys.36(66)496
R. Seki, K. Masutani, PRC27(83)2799

 Strong interaction s-wave terms are repulsive
 Pocket structure near the nuclear surface

Radius of 121Sn



Optical pot. by Dyson eq. 
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Pion–nucleus interaction

In this section, it is explained briefly how to take into account the medium effects to
the p meson based on the pN interaction and to obtain the pion–nucleus interaction
called the optical potential. For the detail explanation for the formulation of the
pion-nucleus optical potential, please see the references (Ericson and Weise 1988;
Oset et al 1982 [49, 50]).

Let us start with the free pion propagator D0(qµ) in vacuum written as,

iD0(qµ) =
i

q2 �m2
p + ie

, (4)

where qµ is the 4-momentum carried by pion and mp is the pion mass. The Dyson
equation is considered to include the effects of the pN interaction in the nuclear
matter and to obtain the pion propagator D(qµ) at finite nuclear density. The Dyson
equation can be written as,

iD(qµ) = iD0 + iD0(�iP)iD0 + iD0(�iP)iD0(�iP)iD0 + ...

= i(D0 +D0PD0 +D0PD0PD0 + ...)

= iD0(qµ)+ iD0(qµ)P(qµ)D(qµ), (5)

where P indicates the pion self-energy which describes the effects of the pion-
nucleon interaction. The Dyson equation Eq. (5) can be expressed diagrammatically
as Fig. 4. The full pion self-energy P is defined as the complete sum of all contribu-
tions of the 1-particle irreducible diagrams of the pN interaction, which is defined
as the diagrams that can not be divided into two connected diagrams by cutting one
internal line of the pion propagator.

P(qµ) = S P irreducible. (6)

In Fig. 5 the simple example of the irreducible diagrams are shown for the pN inter-
action expressed by the 3-point pNN vertex. For other types of the pN interaction
such as those expressed by the ppNN 4-point vertex, one has other series of the
irreducible diagrams. Some examples of the actual functional form of the simple
self-energies can be found in Ref. (Ericson and Weise 1988 [49]). And an introduc-
tory guide for the practical calculations can also be found in Ref. (Oset 1982 [51]).

The Dyson equation Eq. (5) can be rewritten as,

iD(qµ) =
iD0(qµ)

1� D0(qµ)P(qµ)
=

i
(D0(qµ))�1 �P(qµ)

=
i

q2 �m2
p �P(qµ)

. (7)

Thus, the expression of the in-medium pion propagator D(qµ) can be obtained by
implementing the pion self-energy P in the denominator as in Eq. (7). It should be
noticed that the infinite iteration of the self-energy P is taken into account in the
propagator D(qµ).

7
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Fig. 4 The diagrammatical expression of the Dyson equation for the in-medium pion propagator
D(qµ ) shown as the thick solid line, where qµ is the 4 momentum carried by pion. The pion free
propagator is shown as the short-dashed line and the pion self-energy as the solid circle.

= + + ...+

Fig. 5 The diagrammatical expression of the pion self-energy P for the pN interaction expressed
by the 3-point pNN-vertex. The short-dashed lines indicate the pion free propagator, and the solid
lines indicate the in-medium nucleon particle and hole propagators. The small solid circle indicates
the points where the external pion propagator lines are supposed to be connected.

The pion Hamiltonian H for the equation of motion is written as the inverse
operator of the propagator as,

H = D�1 = q2 �m2
p �P(qµ), (8)

and the Klein-Gordon (KG) equation with the medium effects P in the coordinate
space is written as,

⇥
�—2 +µ2 +P(Ep ,�i—,r(r))

⇤
f(r) = [Ep �Vem(r)]2 f(r), (9)

where µ is the pion-nucleus reduced mass, Ep is the complex eigen energy of the

bound state which can be expressed as Ep = µ �B� i
2

G with the binding energy
B and the width G of the bound state. The KG equation is solved to investigate the
structure of the pionic atoms. The local density approximation is used to obtain the
self-energy in the coordinate space. Vem(r) indicates the electromagnetic interaction
between p� and the nucleus, which will be explained later, and implemented into
the equation of motion as the time component of the photon vector potential.

The strong interaction between pion and the nucleus are described by the pion
self-energy P in the coordinate space which is related to the pion-nucleus optical
potential Vopt. The energy dependence of P is usually neglected in the study of the
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leading order in the density !, in accordance with the
corresponding in-medium change of the chiral quark
condensate h !qqqi.

To the extent that U represents part of the (energy
independent) s-wave optical potential commonly used
in the phenomenological analysis of pionic atoms, at least
part of the missing repulsion is thus given a physical
interpretation in terms of the reduced in-medium f!" in
the denominator of (3). Of course, rather than construct-
ing the potential U and following the steps leading to (2)
and (3), one can directly solve the Klein-Gordon (KG)
equation with the full energy dependence of the polar-
ization operator ""!#. This is the procedure systemati-
cally applied in this paper, with proper recognition of
gauge invariance in the presence of the electromagnetic
field.

The KG equation with Coulomb potential Vc"~rr#< 0
and total pion self-energy, "tot"!; ~rr# reads

$"!% Vc#2 &r2 %m2
" %"tot"!% Vc; ~rr#'#"~rr# ( 0:

(4)

The total polarization operator expressed in terms
of local proton and neutron densities, "tot"!; ~rr # (
"tot$!;!p"~rr#;!n"~rr#', can be split into its s-wave and
p-wave parts:

"tot"!;!p;!n# ( ""!# & $"S"!;!p;!n#
&"P"!;!p;!n#;

where we separate explicitly the phenomenological
s-wave absorption term quadratic in densities,

$"S"!;!p;!n# ( %8"
!

1& m"

2M

"

B0!p"!n & !p#; (5)

parametrized as in Ref. [6]. Here M stands for the nucleon
mass. We use ImB0 ( 0:063m%4

" from Ref. [4] and
ReB0 ( 0 as our standard set and discuss variations of
ReB0 and ImB0 later. For the p-wave part "P"!;!p;!n#,
we use the traditional Kisslinger form with inclusion of
short-range correlations and parameters as specified in
Ref. [4] (set A). The regular s-wave part, ""!#, will be in
the center of our consideration below.

Given the smallness of the isospin-even "N scattering
amplitude T&"!#, double-scattering (Pauli-blocking)
corrections in ""!# are well known to be important
[2]. When those are included, the ‘‘phenomenological’’
s-wave pion polarization operator becomes [7]

"phen"!;!p;!n# ( %T%"!##!% T&
eff"!;!#!; (6)

with

T&
eff"!;!# ( T&"!# % 3kF

8"2 "$T&"!#'2 & 2$T%"!#'2#:
(7)

The local Fermi momentum kF"r# ( $3"2!"r#=2'1=3 is
rewritten in terms of the local density !"r#. Taking

the polarization operator (6) at the on-shell pion energy
! ( m",

""!# ( "phen"! ( m";!p;!n#; (8)

together with the absorption part, we recover the tradi-
tional form of the (energy independent) s-wave optical
potential [4,8]. The proton and neutron density distribu-
tions !p"r# and !n"r# are given as two-parameter Fermi
functions !j"r# ( !0;jf1& exp$"r% Rj#=aj'g%1. The cen-
tral density !0;j is normalized to the total number of
protons and neutrons in the nucleus. The proton radii,
Rp, are extracted from the nuclear charge radii following
from the analyses of muonic atoms [20], taking into
account the finite proton size hr2pi ( 0:73 fm2:
Rp$205Pb' ( 6:66 fm and Rp$207Pb' ( 6:67 fm. Since
the charge radii have not been measured for the complete
chain of Pb isotopes, we have interpolated linearly be-
tween two neighboring measured isotopes. The diffuse-
ness coefficient is taken the same for 205;207Pb,
ap ( 0:48 fm. For the neutron radii, we use values from
the proton-neutron rms-radius difference as obtained in
the Brueckner-Hartree-Fock calculations of Ref. [21]:
Rn$205Pb' ( 6:94 fm and Rn$207Pb' ( 6:97 fm. We as-
sume an ( ap. The numerical input is close to that in
Refs. [3,7].

Solutions of the wave equation (4) for Pb isotopes with
the energy independent (threshold) input (8) for the pion-
nuclear optical potential are shown in Fig. 1 by open
circles. The filled circles in Fig. 1 are the results obtained
with the polarization operator,

""!# ( "phen$!;!p"r#;!n"r#'; (9)

in which we keep the explicit energy dependence as given
by the driving terms (1). The energy dependence effects
are evidently important, moving the calculated results
closer to the data. Indeed, with the gauge invariant in-
troduction of the electromagnetic interaction in the pion

FIG. 1. Binding energies and widths of deeply bound pionic
states in the isotopes 207Pb (left figure) and 205Pb (right figure).
Diamonds show the experimental data from [1]. Uncertainties
in the extraction of the 1s level for 207Pb are indicated by
different choices of a control parameter R as specified in [1].
The results for the polarization operator (8) and (9) are de-
picted by open and filled circles, respectively. Triangles show
the results obtained with the chiral polarization operator (10).
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polarization operator [via the replacement ! !
!! Vc"r#], the off-shell pion-nucleon scattering ampli-
tudes are probed at energies !! Vc"r# > m!. This in-
creases the repulsion in T!"!# and disbalances the
cancellation between the sigma term "N and the range
term !#!2 in T$"!#, giving T$%!! Vc"r#&< 0.
Omitting the replacement ! ! !! Vc"r# in !"!#, we
would have !<m!, and this would reduce the repulsion
in T!"!# and turn on attraction in T$"!#, thus leading in
the wrong direction. Taking both the energy dependence
and the proper gauge invariant substitution via !!!!
Vc"r#" is therefore an essential ingredient.

After these qualitative considerations, we proceed now
to the systematic calculation of the pion polarization
operator using in-medium chiral perturbation theory.
Here we extend the results of Ref. [16] at the two-loop
level by taking into account the explicit (off-shell) energy
dependence. The polarization operator has the form

!"!# ' !0"!# $!ds"!# $!rel"!# $!cor"!#: (10)

The first term corresponds to the linear density approxi-
mation:

The isospin-even off-shell !N-scattering amplitude at
zero pion momentum can be written in the following
form (for ! > m!):

T$"!# ' "N ! #!2

f2!
$ 3g2Am

3
!

16!f4!
$ 3g2AQ

2m!$
64!f4!

$ iTim;

where # ' g2A=4M! 2c2 ! 2c3, "N ' !4c1m2
! !

9g2Am
3
!=64!f2!, and Tim ' !2Q="8!f4!#. The nucleon

axial-vector coupling constant has the value gA ' 1:27.
We introduce the abbreviation Q '

!!!!!!!!!!!!!!!!!!!!

!2 !m2
!

p

. The sec-
ond-order low-energy constants c1;2;3 (for notations, see
Ref. [22]) are tuned to the empirical values of the sigma

term [18], "N ' 45 MeV, and the !N scattering length,
T$"m!# ' 0.

The parameter $ reflects freedom in the choice of the
interpolating pion field in the effective chiral Lagrangian
[13,23]. It enters all interaction vertices with three and
more pions. The one-loop correction to the (off-shell)
pion self-energy in vacuum depends also on this parame-
ter $ . By requiring that the residue at the pion pole
remains equal to one [24] as it is implicit in the form of
the KG equation (4), one gets the constraint $ ' 0.

The isospin-odd off-shell !N amplitude at zero-
momentum reads

T!"!# ' !
2f2!

"

1$ %!2

"2!f!#2
#

! !2Q
8!2f4!

ln
!$Q
m!

$ i
2
Tim;

(12)

with % ' "gA!f!=M#2 $ ln"2"=m!#. The cutoff scale
" ' 737 MeV ’ 8f! is chosen to reproduce the central
empirical value of the on-shell scattering amplitude at
threshold T!"m!# ' 1:85( 0:09 fm [19]. We neglect
here small additional counterterm contributions propor-
tional to the third order low-energy constants #ddj of
Ref. [25].

The next term in (10) corresponds to the important
Ericson-Ericson double-scattering correction [2] general-
ized to isospin asymmetric nuclear matter and off-shell
pions:

where kp;n ' "3!2&p;n#1=3 refer to the proton and neutron
Fermi momenta and

L"kp; kn;Q# ' 4kpkn"Q2 $ 3k2p $ 3k2n# $ 8Q"k3n ! k3p# ln
Q$ kn ! kp
Q! kn $ kp

! 8Q"k3p $ k3n# ln
Q$ kp $ kn
Q! kp ! kn

$ %3"k2p ! k2n#2 $ 6Q2"k2p $ k2n# !Q4& ln"kn ! kp#2 !Q2

"kp $ kn#2 !Q2 : (14)

The third term in (10) is a small relativistic correction
from the particle-hole (Born) diagram evaluated at zero
pion momentum:

The last term in (11) represents the effect induced by !!
interactions with two virtual pions being absorbed on the
nucleons in the Fermi sea, and by an additional two-loop

correction [16,23]:

The function H"kp; kn# consists of the last four terms

P H Y S I C A L R E V I E W L E T T E R S week ending
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(ChPT up to NNLO) + (Pheno. 2-body abs. )
+(Pheno. Pwave)

Ex.) Kolomeitsev, Kaiser, & W. Weise, Phys.Rev.Lett. 90 (’03)

 Optical Potential 
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 p-121Sn system

1s

2s 2p

Deeply bound pionic states 1s, 2s, 2p :
Strong interaction effects are large

Structure of the pionic atoms



s-wave interaction  s state 
p-wave interaction  higher partial wave states 
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Fig. 8 The calculated energy levels with the several combinations of the potential terms are shown
in the solid lines for 1s state and dotted lines for the 2p state in 123Sn. The level widths are indicated
by the hatched area. The potential terms included in the calculation for the energy levels are (a) the
electromagnetic interaction Vem, (b) Vem and the isoscalar s-wave interaction (b0 term), (c) Vem,
b0 term, and the isovector s-wave interaction (b1 term), (d) Vem and the whole part of the local
potential (b’s and B0 terms), and (e) the full potential (Vem and Vopt).

tions. This different sensitivity of the states with the different angular momentum
is also shown perturbatively using the Coulomb wave function (Ericson and Weise
1988 [49]).

In Fig. 9, the calculated pion density distributions are shown for the 1s, 2s, and 2p
states in 207Pb and 123Sn. It is observed in the figure that the large fraction of the pion
distribution is located inside the nucleus for the bound states calculated only with
the electromagnetic interaction. For the 1s state in 207Pb, for example, pion exists
inside the nucleus with about 50 % probability due to the attractive electromagnetic
interaction. The pion distributions are, then, pushed outwards by introducing the
repulsive optical potential as shown in the figure and are located around the nuclear
surface for 1s state case. This behavior of the pion densities shown in Fig. 9 and the
effects of the optical potential can be understood by considering the potential shape
shown in Fig. 6. The pion distributions of the ground states obtained by the total
potential is located just in the dip structure of the real potential shown in Fig. 6 as
naturally expected.

The repulsive effect of the real part of the optical potential, in other words, can
be considered to play the important role to have the discrete levels in the deeply
bound region. The imaginary part of the potential expressing the decay and/or finite
life time of the pionic atoms takes into account the absorption of pion into nucleus



How to observe meson in nucleus (modern) 

• Missing mass: 1+23+X（d + A  3He+πAtom）

（X is NOT observed) 

• Invariant mass: X1+2（ ）

（Outside decay background, FSI）

11
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ける 3番粒子のエネルギーや運動量を用いて，欠損質量 (Missing Mass)Mmiss

として，
M2

miss = (E1 + E2 − E3)
2 − (−→p1 +−→p2 −−→p3)2 (4.108)

という量を定義すれば，エネルギー運動量の保存則より，M2
miss = E2

4 − (−→p4)2 で
あって，反応の断面積が大きくなるような場合に対応した欠損質量は，その反応
で生成された 4番粒子の質量M4 と等しいことがわかる．つまり「量子力学的
に定まった離散的な静止質量」を持った何らかの状態や粒子が，質量Mmiss を
持つ 4番粒子として生成されていることが実験的にわかるわけだ．注意したい
のは，欠損質量という名前が暗示するとおり，上の手順では，4番粒子は直接的
には何も観測されていないことである．つまりは実施する実験は 1+2 → 3+X

反応の観測であってX 部分は観ていない．このように，終状態で粒子 3のみを
見ることによってX 部分に現れる量子力学的な状態や新粒子などを観測する方
法を，欠損質量分光法と呼ぶ．もちろんX は，粒子が多数発生する場合や崩壊
幅の非常に広い不安定粒子の生成する場合なども含むので，実験的に得られた
エネルギースペクトラムに現れるピーク構造は，はっきりした構造を持たない
なだらかなバックグラウンドの上に観測されるのが普通である．
π中間子原子生成の話に戻れば，3番粒子として 3Heのエネルギースペクトラ
ムを観測し，そのピークの位置から定めた複数のMmissが，式 (4.107)のM207⊗π

に対応する．これより，複数の Bπ((n")π)の値を求めることができる．このと
き，式 (4.107)の右辺に現れるその他の量は既知なので問題ない．また，この
方法では，ピークの位置自身は運動学的な条件から決まっており，反応機構の
詳細によらないというのも重要な点であろう．反応機構の詳細は式 (4.106)の
|T |2 に含まれており，それぞれのピークの強度，すなわち，4番粒子として生
成される状態の生成確率の大きさを決定するのである．この |T |2 部分の取り扱
いに関しては，4.4.3項で説明する．
スペクトラムに現れるピークの幅に関して補足しておこう．式 (4.106)で表
される二重微分断面積はエネルギーに関する分布としては δ 関数であって，無
限小の幅を持つピーク構造であるが，現実に観測される断面積は有限の幅を持
つ．この幅の起源は 2つあって，1つは中間子束縛系の持つ物理的な性質によ
るものである．4.2.4項でも述べたように，中間子の束縛系は，光学ポテンシャ
ルの虚部で表される強い相互作用の影響により有限の寿命を持つ準安定状態で
あって，不確定性原理からエネルギー固有値に幅を持つ．この幅により，エネ
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4.4 中間子–原子核束縛状態生成法 2 –欠損質量による分光法– 91

子は有限の寿命を持ち，ある確率で φ→ e− + e+ のように電子と陽電子の対に
崩壊する．この実験では，核外に射出された e− と e+ のエネルギーと運動量を
測定する．電子と陽電子の持つエネルギーや運動量を添え字 −と +で表すと，
φ中間子の崩壊時におけるエネルギーと運動量の保存則は 4元運動量を使って，

pµφ = pµ− + pµ+ (4.111)

である．したがって，核外で pµ− と pµ+ を実験的に決定したうえで，これらから
不変質量minv，

minv =
√

(p− + p+)2 (4.112)

を計算すれば，崩壊直前の φ中間子の質量mφ を得ることができる．不変質量
minv は，マンデルスタムの s変数の平方根と同じものであるからローレンツ変
換に対して不変であって，φ中間子の運動の速さなどによらず常に静止質量の
値になる．もちろん，中間子の質量が原子核中で変化するのであれば，φ中間子
が崩壊した位置での核密度の大きさによってmφ，すなわち観測されるminv の
大きさは変化する．その場合，minv の観測結果は，電子–陽電子対に崩壊した
すべての φ中間子の寄与の総和となるため，大きい原子核中に速度の小さい φ

中間子を生成し，原子核中で崩壊する φ中間子の割合を増すほうが質量変化の
情報を得るのに有利であると言える．また，この手法では，電子と陽電子の持
つエネルギーや運動量（方向も含む）が，φ中間子の崩壊から観測までの間に変
化してしまうと φ中間子の情報が失われてしまう．このために，φ → e− + e+

へ崩壊する割合は，φ中間子の全崩壊過程のなかで 10−4程度の割合でありかな
り小さいにもかかわらず，実験では他の粒子との相互作用が弱いレプトン対へ
の崩壊チャンネルを利用している．
最後に欠損質量法との大きな違いを述べておくと，不変質量法では中間子の状
態が離散的な束縛状態にある必要はない．むしろ，非常に大きな核物質中を運
動している，並進対称性を持つような粒子に対して正しい描像に基礎をおいてい
る．中間子が準安定な束縛状態にあるときは，エネルギー的にはハミルトニア
ンの固有状態であり一定の値を持つが，運動量に関しては固有状態ではなくフェ
ルミ運動量程度に分布している．したがって，射出粒子対のエネルギーと運動
量から不変質量分布を計算するのではなく，粒子対のエネルギーの和のほうが
有用な観測量である可能性もある．実際の実験においては，欠損質量法と不変
質量法を併用して，中間子束縛系生成反応で射出される粒子と，中間子の崩壊/
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Effective number approach
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 (d,3He) reaction
d + Nucleus       3He + p atom 1 neutron pick up reaction

H. Toki et al., NPA530(91)679; S. Hirenzaki et al., PRC44(91)2472

• Factorization of elementary process cross section
• Use of known experimental data (e.g., nuclear response)
• Good approach to the mesonic atom systems with relatively narrow widths

Heavy target case:
Formation cross section of pionic atoms

S matrix:

will be replaced  by the elementary cross section laterwave function for each particle
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Effective number approach

Bound region Quasi-elastic region

FO : Neutron occupation probabilities in the target 

FR : Relative strength factor of the N-th excited states 

in the daughter nucleus

＊ Information on the nuclear response in one neutron pick-up reaction

DE = Q + mp − Bp + Sn − 6.787MeV

D(r) : Distortion factor
q :  Momentum transfer
︓Neutron wave function

- Elementary cross section : Experimental data (d+n→3He +p-) 

- Kinematical correction factor: Difference of kinematics between d+n→3He + p- and                                  
A(d,3He)(A-1)     p-

- Effective Number: 



Pick-up Reaction : d + Nucleus       3He + p atom



Expected (d,3He) spectra 
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higherlower Outgoing particle energy



Observed (d,3He) spectra 
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(d,3He) reaction
Initial state:

deuteron
Nucleus

Final state:

Pionic atom
3He

Theoretical calculation Experimental data

208Pb target

S. Hirenzaki et al., PRC44(91)2472 K. Itahashi et al., PRC62(00)025202

H. Toki, et al., NPA530(91)679; S. Hirenzaki et al., PRC44(91)2472

Observation of the deeply bound pionic state for the first time

Experiment@GSI



Role of the momentum transfer q in the reaction
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 Large q ⇒ Cross section becomes small  (generally)
 Matching condition of the angular momentum transfer L and 

the momentum transfer q

q=|pd-pHe|

Sn=0 MeV, B.E.=0 MeV

 (d,3He) reaction

We can observe selectively the different pionic states by adjusting q

• Forward angle: It can be recoilless
Þ Enhanced formation with L~0 state

(s-state contributions relatively large)

• Finite angles: Larger q
Þ Enhanced formation with large L state

= q×(Nuclear Radius）

(q~0)

=> the matching condition plays an important role in determining the largely 
populated subcomponents



122Sn(d,3He) spectrum
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Bound regionQuasi-elastic region
Exp. Data: 122Sn(d,t)121Sn
E. J. Schneid et al., 
Phys. Rev. 156 (1967) 1316

1 neutron pickup reaction 
without p production

Energy resolution
DE=300keV

New Exp. data: 
S.V. Szwec et al.,
PRC104 (2021) 054308

- We can see the large peak structure of pionic 1s state
- Combination of the pionic 1s state and neutron-hole 3s1/2 state 



Neutron wave function: 
H. Koura et al., 
NPA671(2000)96

Energy resolution
DE=300keV

q=
|p d

-p
He

| 
[M

e
V

/c
] (d,3He) reactions

Spectra have a strong angular dependence.

Momentum transfer
Bound region

122Sn(d,3He) spectra at Finite angles
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Quasi-elastic region



122Sn(d,3He) spectra at Finite angles
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0deg 2deg
Dominant Subcomponent

We can obtain information on the deeply bound pionic 2p state
in addition to 1s and 2s states.

Energy resolution
DE=300keV



Extension to the study of the odd-neutron nuclear target
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jh
S. Hirenzaki et al. 
PRC60(99)058202;
N. Nose-Togawa et al. 
PRC71(05)061601(R)

Shift of Peak position in the spectra 

[p- 0+]

Even-Even Nucleus: Jp=0+
Pionic atoms: pion particle - neutron hole

``Residual interaction effect’’
- Energy shift
- Level splitting between different J state 

Additional difficulty to determine B.E. and pion property 
in the nucleus

Pionic state free from residual interaction effect 
Þ Expect to extract more accurate information than even targets 

from data.

 Interests of Odd target
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+

Initial:

Even target: 122Sn (0+)

0+

jh S1/20+ jh

Odd target: 117, 119Sn (1/2+)

(1) neutron pick-up 
from s1/2 orbit 

(2) neutron pick-up jh orbit   
from other than s1/2 

Initial:

Final:

Final:

``No Residual  Interaction’’

0+
S1/2

Formulation: Effective Number

Reasonable
Assumption

Acknowledgement
H. Nakada-san



Excited level of 116SnExcited level of 121Sn

J

0+

jh

S1/2

jh

Even target: 122Sn (0+) Odd target: 117Sn (1/2+)

Exp. Data: 122Sn(d,t)121Sn
E. J. Schneid et al., Phys. Rev. 156 (1967) 1316

Exp. Data: 117Sn(d,t)116Sn, 
J. M. Schippers et al., NPA510(1990)70

 Many excited levels 
 Large excitation energies (Ex)
Pionic atom formation spectra:  
Expected to be
complicated and broad spectra 

 Realistic neutron configurations for the target and the daughter nucleus: Exp. Data

New Exp. data: S.V. Szwec et al.,

PRC104 (2021) 054308
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Odd target 

•We can see clear peak structure of                            
- No residual interaction effect

 117Sn(d,3He) spectra at 0 degrees

[(1s)p 
116Sn(0+)] 

Dominant 
Subcomponent:

Neutron wave function: 
H. Koura et al., NPA671(00)96Bound regionQuasi-Free region

Energy resolution
DE=300keV
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Interest and Motivation
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(1) New exotic Hadron many body systems

(2) Baryon resonances at finite density

(3) Aspects of the Strong Int.Symmetry



In-medium pion and Chiral sym.  
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K. Suzuki et al., PRL92 (04) 072302
Exp@GSI

 b1 determination, Comparison with value in vacuum
 Relation between b1 ⇔ fp⇔ <qq> 

• Gell-Mann－Oakes－Renner (GOR) relation

• Tomozawa－Weinberg (TW) relation

 Pion-Nucleus optical potential

In-medium property of pion

@



Some memos for pi atom 
Basic Story (Prediction, Observation, Feedback)
• Observe meson in nucleus ( B.E., Width, , , , )           
• Deduce in-medium meson properties ( b1, , , ) 
• Relate them to fundamental parameters 

( Condensate, , , )
Some points 
＊States with well-defined quantum numbers

（something like “selection rule” ）
＊Exclusive information ( s-wave isovector int., , ,  )
＊Reliable connection between Theoretical formula 

and  Exp. Result

＊Model independent theoretical treatment 
(… for feedback/fitting) 

In reality, we need some phenomenological pieces.
29



In-medium Chiral sym. 
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K. Suzuki et al., PRL92 (04) 072302
Exp@GSI

 b1 determination, Comparison with value in vacuum
 Relation between b1 ⇔ fp⇔ <qq> 

• Gell-Mann－Oakes－Renner (GOR) relation

• Tomozawa－Weinberg (TW) relation

 Pion-Nucleus optical potential

In-medium property of pion

@

• Data corresponds to info. 
at Effective Density 



Parameter correlation and Effective density 
R. Seki, K. Masutani, 
Phys. Rev. C27(1983)2799

b0

R
e 

B 0

Contour plot of B.E. 

SM

208Pb  1s state

H. Toki, S. Hirenzaki, 
T. Yamazaki, R. S. Hayano,
Nucl. Phys. 501(1989)653

Binding energies are  
almost unchanged along 
the line of SM relation.

=> Pionic atom 
properties are determined 
by potential strength at    
re ~ 1/2r0

All potentials  which satisfies the SM 
relation between potential 
parameters
reproduce the experimental data.



Parameter correlation and Effective density
T. Yamazaki,
S. Hirenzaki

PLB557(03)20

Peak positions of  the overlapping 
density are almost same for all states.

The effective nuclear density re is 
almost same, re ~ 1/2r0    for all states.
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Fig. 1. Diagrams for the πN scattering amplitude induced by the external fields,
Aa

µ and φb
5 . The solid, dotted and wavy lines denote nucleon, pion and external

fields, respectively.

For Πab
5 (q) in Eq. (1), the first term in the right-hand side of

Eq. (15) is dominated by the massless pion in the chiral limit. The
second term corresponds to the forward scattering amplitude of
the external fields (Aa

µ and φb
5 ) with the nucleon multiplied by qµ .

As shown in Fig. 1, there are four different contributions to the
forward amplitude: (a) the term with double π pole where both
Aa

µ and φb
5 couple directly to the pion, (b), (c) the term with single

π pole where either Aa
µ or φb

5 couples directly to the pion, and (d)
the term without π pole where the external fields couple directly
to the nucleon.

It is easy to see that the p-wave coupling of the pion or the
external fields to the nucleon gives vanishing contribution to the
forward amplitude in (a)–(d). On the other hand, the s-wave cou-
pling in (a), (b), (c) can leave finite contributions even in the soft
limit due to the pion pole(s). In particular, particle–hole excitations
do not contribute to the sum rule in the linear-density approxima-
tion. This leads to the conclusion that only the pionic mode with
possible medium modification contributes to the sum rule in the
previous section at low density:

F t
π G∗1/2

π = −〈q̄q〉∗. (16)

Note that Eq. (16) is only valid if both sides are expanded up to
O (ρ).

Taking the ratio of Eq. (16) and its counterpart at zero density,
we find the scaling law:
(

F t
π

Fπ

)
Z∗1/2
π = 〈q̄q〉∗

〈q̄q〉 , (17)

with the in-medium wave function renormalization Z∗
π ≡ G∗

π /Gπ .
As will be shown in the next section, in-medium change of Z∗

π
from 1 can be evaluated from the isosinglet pion–nucleon scatter-
ing amplitude, while F t

π/Fπ is related to the pion–nucleus isovec-
tor scattering lengths through the in-medium TW relation. There-
fore, Eq. (17) gives a direct link between the in-medium modifica-
tion of the quark condensate and that of the pion decay constant.3

Alternative relation between 〈q̄q〉∗ and F t
π is obtained by tak-

ing the matrix element of the PCAC relation ∂ · Aa(x) = 2mqφ
a
5(x)

slightly away from the chiral limit. With the matrix elements
given in Eqs. (6) and (12) with α = π , we have (ε2 − v2

π k2)F t
π =

2mqG∗1/2
π , where F t

π and G∗
π are the values in the chiral and soft

limit. Since the in-medium pion mass is given by ε2 = m∗2
π +

v2
π k2 + O (&k4), we have m∗2

π F t
π = 2mqG∗1/2

π . Combining this with
Eq. (11), we obtain
(

F t
π

)2
m∗2

π = −2mq〈q̄q〉∗, (18)
(

F t
π

Fπ

)2(m∗
π

mπ

)2

= 〈q̄q〉∗
〈q̄q〉 . (19)

Eq. (18) is the in-medium generalization of the Gell-Mann–Oakes–
Renner relation [14] and was derived before in the Nambu–Jona-
Lasinio model [15] and in chiral perturbation theory [11,16]. The-
oretically, Eq. (17) is equivalent to Eq. (19). Experimentally, the

3 There is also a well-known low-energy theorem at low density which relates
the in-medium modification of the quark condensate to the pion–nucleon σ -term
[13]: 〈q̄q〉∗/〈q̄q〉 = 1 − σπ Nρ/(F 2

π m2
π ) with σπ N ' 45 MeV.

information on m∗
π is necessary to check the latter sum rule, which

is relatively difficult.

4. In-medium wave-function renormalization

Let us consider the relation between the pion wave function
renormalization constant Z∗

π and the isospin singlet pion–nucleon
scattering amplitude. For this purpose, we introduce the off-shell
πN amplitude near the pion pole through the operator φa

5(x), as is
done in [17],

T ab
π N(ν,νB ;mπ )

= δab T (+) + 1
2

[
τ a,τ b] T (−)

≡ i
Gπ

q2q′ 2
∫

d4x eiq·x〈N(P ′)
∣∣T

[
φa

5(x)φb
5(0)

]∣∣N(P )
〉

(20)

with the in-coming (out-going) pion momentum q (q′) and the
kinematical variables defined as ν ≡ P · (q + q′)/(2MN ) and νB ≡
−q · q′/(2MN ). In the forward limit q′ → q with &q = 0, the scatter-
ing amplitude is a function solely of ω. Thus, the isospin singlet
amplitude for small ω is written as

T (+)(ω;mπ ) ' α + βω2. (21)

Thanks to the special off-shell extrapolation given in Eq. (20), the
coefficients α and β can be evaluated as follows [17]: (i) At the
off-shell Weinberg point, we have T (+)(0;mπ ) = α = −σπ N/F 2

π
with the π N sigma term σπ N ' 45 MeV [18]. (ii) At the on-shell
threshold, we have T (+)(ω = mπ ;mπ ) = 4π(1 +mπ /mN)aπ N with
the scattering length aπ N = (0.0016 ± 0.0013)m−1

π [19]. Combining
these, we obtain

β ' σπ N

F 2
πm2

π
+

(
1 + mπ

mN

)
4πaπ N

m2
π

. (22)

Numerically, the first term in the right-hand side of Eq. (22) dom-
inates over the second term and we find β = 2.17 ± 0.04 fm3.

To obtain a relation between β and Z∗
π , we now consider the

correlation of φa
5 in symmetric nuclear matter in the chiral limit

expanded up to linear in density according to Eqs. (15), (20) and
(21);

Dab(q) =
∫

d4x eiq·x〈Ω|T
[
φa

5(x)φb
5(0)

]
|Ω〉 (23)

−→
q=0

iδabGπ

[
1
ω2 − 1

ω2 T (+)(ω;0)ρ
1
ω2

]
(24)

= iδab Gπ (1 − βρ)

ω2 = iδab G∗
π

ω2 . (25)

Then, we obtain

Z∗1/2
π ≡

(
G∗

π

Gπ

)1/2

= 1 − γ
ρ

ρ0
, (26)

with γ = βρ0/2 ' 0.184. Notice that the reduction of Z∗
π in the

nuclear medium given in Eq. (26) stems solely from the s-wave
pion–nucleon interaction.

5. In-medium Tomozawa–Weinberg relation

In-medium pion properties are conventionally expressed in
terms of the pion–nucleus optical potential. For instance, the s-
wave potential for π− is parametrized as [6]

2mπ Us = −4π

[
1 + mπ

mN

](
b∗

0(ρ)ρ − b∗
1(ρ)δρ

)
(27)

= −T (+)∗(ω = mπ ;mπ )ρ − T (−)∗(ω = mπ ;mπ )δρ, (28)

D. Jido et al. / Physics Letters B 670 (2008) 109–113 111

Fig. 1. Diagrams for the πN scattering amplitude induced by the external fields,
Aa

µ and φb
5 . The solid, dotted and wavy lines denote nucleon, pion and external

fields, respectively.

For Πab
5 (q) in Eq. (1), the first term in the right-hand side of

Eq. (15) is dominated by the massless pion in the chiral limit. The
second term corresponds to the forward scattering amplitude of
the external fields (Aa

µ and φb
5 ) with the nucleon multiplied by qµ .

As shown in Fig. 1, there are four different contributions to the
forward amplitude: (a) the term with double π pole where both
Aa

µ and φb
5 couple directly to the pion, (b), (c) the term with single

π pole where either Aa
µ or φb

5 couples directly to the pion, and (d)
the term without π pole where the external fields couple directly
to the nucleon.

It is easy to see that the p-wave coupling of the pion or the
external fields to the nucleon gives vanishing contribution to the
forward amplitude in (a)–(d). On the other hand, the s-wave cou-
pling in (a), (b), (c) can leave finite contributions even in the soft
limit due to the pion pole(s). In particular, particle–hole excitations
do not contribute to the sum rule in the linear-density approxima-
tion. This leads to the conclusion that only the pionic mode with
possible medium modification contributes to the sum rule in the
previous section at low density:

F t
π G∗1/2

π = −〈q̄q〉∗. (16)

Note that Eq. (16) is only valid if both sides are expanded up to
O (ρ).

Taking the ratio of Eq. (16) and its counterpart at zero density,
we find the scaling law:
(

F t
π

Fπ

)
Z∗1/2
π = 〈q̄q〉∗

〈q̄q〉 , (17)

with the in-medium wave function renormalization Z∗
π ≡ G∗

π /Gπ .
As will be shown in the next section, in-medium change of Z∗

π
from 1 can be evaluated from the isosinglet pion–nucleon scatter-
ing amplitude, while F t

π/Fπ is related to the pion–nucleus isovec-
tor scattering lengths through the in-medium TW relation. There-
fore, Eq. (17) gives a direct link between the in-medium modifica-
tion of the quark condensate and that of the pion decay constant.3

Alternative relation between 〈q̄q〉∗ and F t
π is obtained by tak-

ing the matrix element of the PCAC relation ∂ · Aa(x) = 2mqφ
a
5(x)

slightly away from the chiral limit. With the matrix elements
given in Eqs. (6) and (12) with α = π , we have (ε2 − v2

π k2)F t
π =

2mqG∗1/2
π , where F t

π and G∗
π are the values in the chiral and soft

limit. Since the in-medium pion mass is given by ε2 = m∗2
π +

v2
π k2 + O (&k4), we have m∗2

π F t
π = 2mqG∗1/2

π . Combining this with
Eq. (11), we obtain
(

F t
π

)2
m∗2

π = −2mq〈q̄q〉∗, (18)
(

F t
π

Fπ

)2(m∗
π

mπ

)2

= 〈q̄q〉∗
〈q̄q〉 . (19)

Eq. (18) is the in-medium generalization of the Gell-Mann–Oakes–
Renner relation [14] and was derived before in the Nambu–Jona-
Lasinio model [15] and in chiral perturbation theory [11,16]. The-
oretically, Eq. (17) is equivalent to Eq. (19). Experimentally, the

3 There is also a well-known low-energy theorem at low density which relates
the in-medium modification of the quark condensate to the pion–nucleon σ -term
[13]: 〈q̄q〉∗/〈q̄q〉 = 1 − σπ Nρ/(F 2

π m2
π ) with σπ N ' 45 MeV.

information on m∗
π is necessary to check the latter sum rule, which

is relatively difficult.

4. In-medium wave-function renormalization

Let us consider the relation between the pion wave function
renormalization constant Z∗

π and the isospin singlet pion–nucleon
scattering amplitude. For this purpose, we introduce the off-shell
πN amplitude near the pion pole through the operator φa

5(x), as is
done in [17],

T ab
π N(ν,νB ;mπ )

= δab T (+) + 1
2

[
τ a,τ b] T (−)

≡ i
Gπ

q2q′ 2
∫

d4x eiq·x〈N(P ′)
∣∣T

[
φa

5(x)φb
5(0)

]∣∣N(P )
〉

(20)

with the in-coming (out-going) pion momentum q (q′) and the
kinematical variables defined as ν ≡ P · (q + q′)/(2MN ) and νB ≡
−q · q′/(2MN ). In the forward limit q′ → q with &q = 0, the scatter-
ing amplitude is a function solely of ω. Thus, the isospin singlet
amplitude for small ω is written as

T (+)(ω;mπ ) ' α + βω2. (21)

Thanks to the special off-shell extrapolation given in Eq. (20), the
coefficients α and β can be evaluated as follows [17]: (i) At the
off-shell Weinberg point, we have T (+)(0;mπ ) = α = −σπ N/F 2

π
with the π N sigma term σπ N ' 45 MeV [18]. (ii) At the on-shell
threshold, we have T (+)(ω = mπ ;mπ ) = 4π(1 +mπ /mN)aπ N with
the scattering length aπ N = (0.0016 ± 0.0013)m−1

π [19]. Combining
these, we obtain

β ' σπ N

F 2
πm2

π
+

(
1 + mπ

mN

)
4πaπ N

m2
π

. (22)

Numerically, the first term in the right-hand side of Eq. (22) dom-
inates over the second term and we find β = 2.17 ± 0.04 fm3.

To obtain a relation between β and Z∗
π , we now consider the

correlation of φa
5 in symmetric nuclear matter in the chiral limit

expanded up to linear in density according to Eqs. (15), (20) and
(21);

Dab(q) =
∫

d4x eiq·x〈Ω|T
[
φa

5(x)φb
5(0)

]
|Ω〉 (23)

−→
q=0

iδabGπ

[
1
ω2 − 1

ω2 T (+)(ω;0)ρ
1
ω2

]
(24)

= iδab Gπ (1 − βρ)

ω2 = iδab G∗
π

ω2 . (25)

Then, we obtain

Z∗1/2
π ≡

(
G∗

π

Gπ

)1/2

= 1 − γ
ρ

ρ0
, (26)

with γ = βρ0/2 ' 0.184. Notice that the reduction of Z∗
π in the

nuclear medium given in Eq. (26) stems solely from the s-wave
pion–nucleon interaction.

5. In-medium Tomozawa–Weinberg relation

In-medium pion properties are conventionally expressed in
terms of the pion–nucleus optical potential. For instance, the s-
wave potential for π− is parametrized as [6]

2mπ Us = −4π

[
1 + mπ

mN

](
b∗

0(ρ)ρ − b∗
1(ρ)δρ

)
(27)

= −T (+)∗(ω = mπ ;mπ )ρ − T (−)∗(ω = mπ ;mπ )δρ, (28)
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with the isoscalar density ρ = ρp + ρn and the isovector density
δρ = ρp − ρn . The parameters b∗

0 and b∗
1 represent the pion–

nucleus scattering lengths in isoscalar and isovector channels,
respectively. T (±)∗(ω;mπ ) are the isoscalar and isovector pion–
nucleus scattering amplitude at zero spatial momentum. The value
of b∗

1 extracted from the pionic atom and π−–nucleus scattering
data is larger than that in the vacuum, which indicates an en-
hanced repulsion from nuclei [1,2]. This extra repulsion expressed
by b∗

1 is interpreted as originating from the in-medium reduction
of F t

π through the in-medium generalization of the Tomozawa–
Weinberg relation [6,7].

Let us derive a relation between b∗
1 and F t

π in a way parallel to
the derivation of Z∗

π in the previous section using current commu-
tation relations. We consider the following axial vector correlator
in a slightly asymmetric nuclear matter |Ω ′〉 in the chiral limit:

Πab
ν (q) =

∫
d4x eiq·x∂µ〈Ω ′|T

[
Aa

µ(x)Ab
ν(0)

]
|Ω ′〉. (29)

Then using the current conservation ∂ · A = 0 and the relation∫
d4x ∂µT[Aa

µ(x)Ab
ν(0)] = [Q a

5 , Ab
ν(0)] = iεabc V c

ν(0) satisfied in the
chiral limit, we obtain the sum rule

Πab
0 (0) = iεab3〈Ω ′|V 3

0 |Ω ′〉 & iεab3 1
2
δρ. (30)

On the other hand, Eq. (29) at the chiral and soft limits is saturated
with linear in isovector density as

Π12
0 (q)−→

q=0
iω

[
ωF t

π

ω2 · T (−)∗(ω;0)δρ · ωF t
π

ω2

]
. (31)

Comparing Eqs. (30) and (31), we find

T (−)∗(ω;0) & ω

2(F t
π )2 . (32)

This is an in-medium generalization of the Tomozawa–Weinberg
relation [17,20] and was obtained before in Ref. [6] with chiral per-
turbation approach.

Using the definitions Eqs. (27), (28) together with Eq. (32), we
obtain a formula relating the in-medium change of the isovector
scattering length and the in-medium change of the pion decay
constant in the chiral limit:

b1

b∗
1

=
(

F t
π

Fπ

)2

. (33)

6. In-medium quark condensate

Now, inserting Eqs. (26) and (33) into Eq. (16), we arrive at one
of the central results in this work,

〈q̄q〉∗
〈q̄q〉 &

(
b1

b∗
1

)1/2(
1 − γ

ρ

ρ0

)
, (34)

which directly relates the in-medium quark condensate with the
observables related to the pion in nuclei. The deeply bound pio-
nic atom data suggest the repulsive enhancement of b∗

1 [1]. The
πN scattering data tell that γ > 0. Thus, Eq. (34) implies that
these experimental facts give a direct evidence of the reduction
of the quark condensate in nuclear medium. Quantitatively, the
experimental value of b1/b∗

1 is obtained as 0.79 ± 0.05 at the
effective density ρ ≈ 0.6ρ0 in deeply bound pionic atoms [1].
With this value and γ = 0.184 estimated in Section 4 together
with the linear density approximation, we find for the ratio of
the quark condensates 〈q̄q〉∗/〈q̄q〉 & 1 − 0.37ρ/ρ0. We also eval-
uate this ratio with b1/b∗

1 = 0.75 obtained in elastic π–nucleus
scatterings [2] assuming the effective density ρ ≈ ρ0. The result
is 〈q̄q〉∗/〈q̄q〉 & 1 − 0.43ρ/ρ0. These numbers are consistent with

that given by the formula expressed with the pion–nucleon σ -
term (see footnote 3). For further quantitative argument, one has
to take into account explicit chiral symmetry breaking effects and
higher density contributions.

Here we emphasize that the renormalization of the pion field
is inevitable in describing the pion dynamics when partial restora-
tion of chiral symmetry occurs. This is understood clearly in the
context of the chiral effective theory. The chiral effective theory
is based on a consistent decomposition of the field variables on
the chiral manifold with the original symmetry to radial (σ ) and
angular (pionic, i.e., Nambu–Goldstone) ones. For dynamics in the
vacuum, the relevant degree of freedom is the massless angular
mode expressed by the dimensionless chiral field U . Since the pion
field has the dimension of energy and the order parameter of the
dynamical symmetry breaking provides the only relevant energy
scale in the chiral limit, the pion field should be normalized by the
quark condensate. Therefore, when partial restoration of the chiral
symmetry takes place, the pion field is necessarily renormalized
according to the reduction of the quark condensate [8]; see also
Section 8.

7. The sum rule beyond the chiral limit

Let us generalize the in-medium sum rule Eq. (11) in the chi-
ral limit to the case with a finite quark mass mq . From the PCAC
relation ∂ · Aa(x) = 2mqφ

a
5(x), Eq. (2) is easily generalized to

Πab
5 (0) − 2mq Dab(0) = −iδab〈q̄q〉∗, (35)

where Dab(q) is the correlation function of the pseudoscalar den-
sity φa

5 given in Eq. (23).
Also, the definition of the coupling constants, Eqs. (6) and

(7), together with the PCAC relation lead to the generalization of
Eq. (8),

ε2
.

(
N∗

. + F ∗
.

)
− k2 F ∗

. = 2mqG∗1/2
. . (36)

The hadronic matrix elements in the left-hand side of Eq. (35)
can be evaluated as before and we find the sum rule away from
the chiral limit,
∑

.

Re
[(

N∗
. + F ∗

.

)
G∗1/2

.

]
= −〈q̄q〉∗, (37)

where the summation is taken over all states coupled to Aµ

and φ5, and the matrix elements are evaluated at k. = (ε.(k =
0),0). Modes . may be classified into would-be zero modes (. =
α) and would-be non-zero modes (. = β). Then, Eq. (36) shows
that, in the soft limit, N∗

α + F ∗
α = const + O (mq) for would-be

zero-modes, while N∗
β + F ∗

β = O (mq) for would-be non-zero modes.
Namely, the quark mass correction to 〈q̄q〉∗ in the rhs of Eq. (37)
receives both effects. To evaluate them, detailed hadronic model
calculations such as given in Ref. [21] are needed.

8. Relation to the chiral effective theory

So far, we have derived the in-medium sum rule Eq. (11) based
only on general operator relations in QCD without assuming any
hadronic descriptions. The sum rule can be used for checking con-
sistency of theoretical models with the fundamental symmetry of
QCD, and also for experimental confirmations of partial restoration
of chiral symmetry in nuclear medium, once the matrix elements
of the currents are experimentally extracted, as discussed in Sec-
tion 6.

Let us demonstrate here how the in-medium GW relation (16)
is expressed in terms of the low energy constants in chiral per-
turbation theory. An effective Lagrangian for the pion in nuclear
medium is obtained in the mean field approximation of the nu-
cleon field [16]:
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Fig. 1. Diagrams for the πN scattering amplitude induced by the external fields,
Aa

µ and φb
5 . The solid, dotted and wavy lines denote nucleon, pion and external

fields, respectively.

For Πab
5 (q) in Eq. (1), the first term in the right-hand side of

Eq. (15) is dominated by the massless pion in the chiral limit. The
second term corresponds to the forward scattering amplitude of
the external fields (Aa

µ and φb
5 ) with the nucleon multiplied by qµ .

As shown in Fig. 1, there are four different contributions to the
forward amplitude: (a) the term with double π pole where both
Aa

µ and φb
5 couple directly to the pion, (b), (c) the term with single

π pole where either Aa
µ or φb

5 couples directly to the pion, and (d)
the term without π pole where the external fields couple directly
to the nucleon.

It is easy to see that the p-wave coupling of the pion or the
external fields to the nucleon gives vanishing contribution to the
forward amplitude in (a)–(d). On the other hand, the s-wave cou-
pling in (a), (b), (c) can leave finite contributions even in the soft
limit due to the pion pole(s). In particular, particle–hole excitations
do not contribute to the sum rule in the linear-density approxima-
tion. This leads to the conclusion that only the pionic mode with
possible medium modification contributes to the sum rule in the
previous section at low density:

F t
π G∗1/2

π = −〈q̄q〉∗. (16)

Note that Eq. (16) is only valid if both sides are expanded up to
O (ρ).

Taking the ratio of Eq. (16) and its counterpart at zero density,
we find the scaling law:
(

F t
π

Fπ

)
Z∗1/2
π = 〈q̄q〉∗

〈q̄q〉 , (17)

with the in-medium wave function renormalization Z∗
π ≡ G∗

π /Gπ .
As will be shown in the next section, in-medium change of Z∗

π
from 1 can be evaluated from the isosinglet pion–nucleon scatter-
ing amplitude, while F t

π/Fπ is related to the pion–nucleus isovec-
tor scattering lengths through the in-medium TW relation. There-
fore, Eq. (17) gives a direct link between the in-medium modifica-
tion of the quark condensate and that of the pion decay constant.3

Alternative relation between 〈q̄q〉∗ and F t
π is obtained by tak-

ing the matrix element of the PCAC relation ∂ · Aa(x) = 2mqφ
a
5(x)

slightly away from the chiral limit. With the matrix elements
given in Eqs. (6) and (12) with α = π , we have (ε2 − v2

π k2)F t
π =

2mqG∗1/2
π , where F t

π and G∗
π are the values in the chiral and soft

limit. Since the in-medium pion mass is given by ε2 = m∗2
π +

v2
π k2 + O (&k4), we have m∗2

π F t
π = 2mqG∗1/2

π . Combining this with
Eq. (11), we obtain
(

F t
π

)2
m∗2

π = −2mq〈q̄q〉∗, (18)
(

F t
π

Fπ

)2(m∗
π

mπ

)2

= 〈q̄q〉∗
〈q̄q〉 . (19)

Eq. (18) is the in-medium generalization of the Gell-Mann–Oakes–
Renner relation [14] and was derived before in the Nambu–Jona-
Lasinio model [15] and in chiral perturbation theory [11,16]. The-
oretically, Eq. (17) is equivalent to Eq. (19). Experimentally, the

3 There is also a well-known low-energy theorem at low density which relates
the in-medium modification of the quark condensate to the pion–nucleon σ -term
[13]: 〈q̄q〉∗/〈q̄q〉 = 1 − σπ Nρ/(F 2

π m2
π ) with σπ N ' 45 MeV.

information on m∗
π is necessary to check the latter sum rule, which

is relatively difficult.

4. In-medium wave-function renormalization

Let us consider the relation between the pion wave function
renormalization constant Z∗

π and the isospin singlet pion–nucleon
scattering amplitude. For this purpose, we introduce the off-shell
πN amplitude near the pion pole through the operator φa

5(x), as is
done in [17],

T ab
π N(ν,νB ;mπ )

= δab T (+) + 1
2

[
τ a,τ b] T (−)

≡ i
Gπ

q2q′ 2
∫

d4x eiq·x〈N(P ′)
∣∣T

[
φa

5(x)φb
5(0)

]∣∣N(P )
〉

(20)

with the in-coming (out-going) pion momentum q (q′) and the
kinematical variables defined as ν ≡ P · (q + q′)/(2MN ) and νB ≡
−q · q′/(2MN ). In the forward limit q′ → q with &q = 0, the scatter-
ing amplitude is a function solely of ω. Thus, the isospin singlet
amplitude for small ω is written as

T (+)(ω;mπ ) ' α + βω2. (21)

Thanks to the special off-shell extrapolation given in Eq. (20), the
coefficients α and β can be evaluated as follows [17]: (i) At the
off-shell Weinberg point, we have T (+)(0;mπ ) = α = −σπ N/F 2

π
with the π N sigma term σπ N ' 45 MeV [18]. (ii) At the on-shell
threshold, we have T (+)(ω = mπ ;mπ ) = 4π(1 +mπ /mN)aπ N with
the scattering length aπ N = (0.0016 ± 0.0013)m−1

π [19]. Combining
these, we obtain

β ' σπ N

F 2
πm2

π
+

(
1 + mπ

mN

)
4πaπ N

m2
π

. (22)

Numerically, the first term in the right-hand side of Eq. (22) dom-
inates over the second term and we find β = 2.17 ± 0.04 fm3.

To obtain a relation between β and Z∗
π , we now consider the

correlation of φa
5 in symmetric nuclear matter in the chiral limit

expanded up to linear in density according to Eqs. (15), (20) and
(21);

Dab(q) =
∫

d4x eiq·x〈Ω|T
[
φa

5(x)φb
5(0)

]
|Ω〉 (23)

−→
q=0

iδabGπ

[
1
ω2 − 1

ω2 T (+)(ω;0)ρ
1
ω2

]
(24)

= iδab Gπ (1 − βρ)

ω2 = iδab G∗
π

ω2 . (25)

Then, we obtain

Z∗1/2
π ≡

(
G∗

π

Gπ

)1/2

= 1 − γ
ρ

ρ0
, (26)

with γ = βρ0/2 ' 0.184. Notice that the reduction of Z∗
π in the

nuclear medium given in Eq. (26) stems solely from the s-wave
pion–nucleon interaction.

5. In-medium Tomozawa–Weinberg relation

In-medium pion properties are conventionally expressed in
terms of the pion–nucleus optical potential. For instance, the s-
wave potential for π− is parametrized as [6]

2mπ Us = −4π

[
1 + mπ

mN

](
b∗

0(ρ)ρ − b∗
1(ρ)δρ

)
(27)

= −T (+)∗(ω = mπ ;mπ )ρ − T (−)∗(ω = mπ ;mπ )δρ, (28)



In-medium GOR

, where

＊ Model independent (low density expression)
＊ Zπ︓wave function renormalization 
＊ Equivalent to GOR
＊ mπ* not necessary (but scattering length) 
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[8] S. Hübsch and D. Jido, [arXiv:2103.08823 [nucl-th]].
[9] C. J. Batty, E. Friedman and A. Gal, Phys. Rept. 287, 385 (1997).

[10] E. Friedman and A. Gal, Phys. Rept. 452, 89 (2007).
[11] R. Gupta, S. Park, M. Hoferichter, E. Mereghetti, B. Yoon and T. Bhattacharya, [arXiv:2105.12095 [hep-lat]].
[12] T. Yamazaki, S. Hirenzaki, R.S. Hayano, H. Toki, Phys. Rep. 514, 1 (2012).
[13] K. Suzuki et al., Phys. Rev. Lett. 92, 072302 (2004).
[14] E. E. Kolomeitsev, N. Kaiser and W. Weise, Phys. Rev. Lett. 90, 092501 (2003).
[15] D. Jido, T. Hatsuda and T. Kunihiro, Phys. Lett. B670, 109 (2008).
[16] S. Goda and D. Jido, arXiv:1308.2660 [nucl-th]; arXiv:1312.0832 [nucl-th].
[17] T. Yamazaki and S. Hirenzaki, Phys. Lett. B 557, 20 (2003).
[18] T. Nishi et al., Phys. Rev. Lett. 120, 152505 (2018).
[19] K. Itahashi et al., Proposal for Nuclear Physics Experiment at RI Beam Factory, NP1512-RIBF135 (2019)
[20] Y. Umemoto, S. Hirenzaki, K. Kume and H. Toki, Phys. Rev. C 62, 024606 (2000).
[21] Y. Umemoto, Deeply bound pionic atoms – Structure and formation of 1s and 2p states–, Doctoral Thesis, Nara Women’s

University (2000).
[22] N. Ikeno, R. Kimura, J. Yamagata-Sekihara, H. Nagahiro, D. Jido, K. Itahashi, L.S. Geng, S. Hirenzaki, Prog. Theor.

Phys. 126, 483 (2011).
[23] N. Ikeno, H. Nagahiro and S. Hirenzaki, Eur. Phys. J. A 47, 161 (2011).
[24] N. Ikeno, J. Yamagata-Sekihara, H. Nagahiro and S. Hirenzaki, PTEP 2013, 063D01 (2013).
[25] N. Ikeno, J. Yamagata-Sekihara, H. Nagahiro and S. Hirenzaki, PTEP 2015, 033D01 (2015).
[26] G. Fricke et al., At. Data Nucl. Data Tables 60, 177 (1995).
[27] R. Seki and K. Masutani, Phys. Rev. C27, 2799 (1983).
[28] J. Nieves, E. Oset and C. Garcia-Recio, Nucl. Phys. A554, 509 (1993).
[29] N. Nose-Togawa, S. Hirenzaki and K. Kume, Nucl. Phys. A623, 548 (1997).
[30] N. Nose-Togawa, S. Hirenzaki and K. Kume, Nucl. Phys. A646, 467 (1999).
[31] E. J. Schneid, A. Prakash, and B. L. Cohen, Phys. Rev. 156 (1967) 1316.
[32] G. Galés, E. Gerlic, G. Duhamel, G. Perrin, C. Perin and V. Comparat, Nucl. Phys. A381 (1982) 40.

LA-UR-21-24759

The nucleon sigma term from lattice QCD

Rajan Gupta,1, ⇤ Sungwoo Park,1, 2, † Martin Hoferichter,3, ‡ Emanuele
Mereghetti,1, § Boram Yoon,4, ¶ and Tanmoy Bhattacharya1, ⇤⇤

1Los Alamos National Laboratory, Theoretical Division T-2, Los Alamos, NM 87545, USA
2Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,
University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

4Los Alamos National Laboratory, Computer, Computational and
Statistical Sciences Division CCS-7, Los Alamos, NM 87545, USA

We present an analysis of the pion–nucleon �-term, �⇡N , using six ensembles with 2+1+1-flavor
highly improved staggered quark action generated by the MILC collaboration. The most serious
systematic e↵ect in lattice calculations of nucleon correlation functions is the contribution of excited
states. We estimate these using chiral perturbation theory (�PT), and show that the leading
contribution to the isoscalar scalar charge comes from N⇡ and N⇡⇡ states. Therefore, we carry
out two analyses of lattice data to remove excited-state contamination, the standard one and a new
one including N⇡ and N⇡⇡ states. We find that the standard analysis gives �⇡N = 40.4(4.7) MeV,
consistent with previous lattice calculations, while the �PT-motivated analysis gives �⇡N = 61.6(6.4)
MeV, which is consistent with phenomenological values obtained using ⇡N scattering data. Our data
on one physical pion mass ensemble was crucial for exposing this di↵erence, therefore, calculations
on additional physical mass ensembles are needed to confirm our result and resolve the tension
between lattice QCD and phenomenology.

I. INTRODUCTION

This paper presents results for the pion–nucleon �-
term, �⇡N ⌘ mud g

u+d
S ⌘ mud hN(k, s)|ūu + d̄d|N(k, s)i

calculated in the isospin symmetric limit with mud =
(mu + md)/2 the average of the light quark masses. It
is a fundamental parameter of QCD that quantifies the
amount of the nucleon mass generated by the u- and d-
quarks. It is determined on the lattice from the forward
matrix element of the scalar density q̄q between the nu-
cleon state, i.e., the scalar charge gqS defined by

gqS = hN(k = 0, s)|ZS q̄q|N(k = 0, s)i, (1)

where ZS is the renormalization constant and the nucleon
spinor has unit normalization. The connection between
gqS and the rate of variation of the nucleon mass, MN ,
with the quark mass is given by the Feynman–Hellmann
(FH) relation [1–3]

@MN

@mq
= hN(k, s)|q̄q|N(k, s)i = gqS/ZS . (2)

The charge, gqS , determines the coupling of the nucleon
to the scalar quark current with flavor q—an impor-
tant input quantity in the search for physics beyond
the Standard Model (SM), including in direct-detection
searches for dark matter [4–8], lepton flavor violation in

⇤ rajan@lanl.gov
† sungwoo@lanl.gov
‡ hoferichter@itp.unibe.ch
§ emereghetti@lanl.gov
¶ boram@lanl.gov
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µ ! e conversion in nuclei [9, 10], and electric dipole
moments [11–14]. In particular, �⇡N is a rare example of
a matrix element that, despite the lack of scalar probes
in the SM, can still be extracted from phenomenology—
via the Cheng–Dashen low-energy theorem [15, 16]—and
thus defines an important benchmark quantity for lattice
QCD.

The low-energy theorem establishes a connection be-
tween �⇡N and a pion–nucleon (⇡N) scattering ampli-
tude, albeit evaluated at unphysical kinematics. With
one-loop corrections free of chiral logarithms [17, 18], the
remaining corrections to the low-energy theorem scale
as �⇡NM2

⇡/M
2

N ⇡ 1MeV, leaving the challenge of con-
trolling the analytic continuation of the ⇡N amplitude.
Stabilizing this extrapolation by means of dispersion re-
lations, Refs. [19–21] found �⇡N ⇡ 45MeV based on the
partial-wave analyses from Refs. [22, 23]. More recent
partial-wave analyses [24, 25] favor higher values, e.g.,
�⇡N = 64(8)MeV [26]. Similarly, �PT analyses depend
crucially on the ⇡N input, with �-term prediction vary-
ing accordingly [27, 28].

The analytic continuation can be further improved in
the framework of Roy–Steiner equations [29–37], whose
constraints on �⇡N become most powerful when com-
bined with pionic-atom data on threshold ⇡N scatter-
ing [38–42]. Slightly updating the result from Refs. [31,
33] to account for the latest data on the pionic hydrogen
width [40], one finds �⇡N = 59.0(3.5)MeV. In particu-
lar, this determination includes isospin-breaking correc-
tions [43–46] to ensure that �⇡N coincides with its defi-
nition in lattice QCD calculations [34]. The di↵erence
to Refs. [19–21] traces back to the scattering lengths
implied by Refs. [22, 23], which are incompatible with
the modern pionic-atom data. Independent constraints
from experiment are provided by low-energy ⇡N cross
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We calculate the scalar and tensor charges of the nucleon in 2þ 1-flavor lattice QCD, for which the
systematics of the renormalization of the disconnected diagram is well controlled. Numerical simulations
are performed at a single lattice spacing a ¼ 0.11 fm. We simulate four pion masses, which cover a range
ofmπ ∼ 290–540 MeV, and a single strange quark mass close to its physical value. The statistical accuracy
is improved by employing the so-called low-mode averaging technique and the truncated solver method.
We study up, down, and strange quark contributions to the nucleon charges by calculating disconnected
diagrams using the all-to-all quark propagator. Chiral symmetry is exactly preserved by using the overlap
quark action to avoid operator mixing among different flavors, which complicates the renormalization of
scalar and tensor matrix elements and leads to possibly large contamination to the small strange quark
contributions. We also study the nucleon axial charge with a contribution from the disconnected diagram.
Our results are in reasonable agreement with experiments and previous lattice studies.
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I. INTRODUCTION

The nucleon charges are very important input parameters
in the study of new physics beyond the standard model, and
accurate values are required in phenomenological analyses.
As a representative case, the nucleon scalar charge is
important in the direct search for dark matters [1–4].
The nucleon tensor charge relates the quark electric dipole
moment to that of the nucleon, which is an important
observable in the search for new sources of CP violation
[5,6]. The nucleon scalar and tensor charges are however
difficult to directly measure in experiments, and no accurate

experimental values are currently known. They are thus
important subjects to be studied in lattice QCD, since it is
the only known method to calculate hadronic quantities
with controlled uncertainties.
The nucleon charges have widely been studied in the

literature. The evaluation of the nucleon scalar charge in
lattice QCD first began in the context of the investigation of
the nucleon sigma term σπN ≡P

q¼u;d
mq

2mN
hNjq̄qjNi. It is

still a matter of debate due to the discrepancy between
results of recent lattice QCD calculations at the physical pion
mass, yielding values between 30 to 40 MeV [7–11], and
phenomenological ones, giving almost 60MeV [12–16]. The
nucleon scalar charge also contains the isovector one as well
as the strange content of the nucleon, which are now showing
importance in the analysis of new physics beyond stan-
dard model.
The nucleon tensor charge is the leading twist contri-

bution to the transversity distribution, one of the three
parton distribution functions of the polarized nucleon [17].
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IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406 Orsay, France;
iTHES Research Group, RIKEN, Wako, Saitama 351-0198, Japan,

and Complex Simulation Group, School of Biomedicine, Far Eastern Federal University,
Vladivostok 690950, Russia

S. Hashimoto and T. Kaneko
KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
and School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Sokendai),

Tsukuba 305-0801, Japan

H. Ohki
Department of Physics, Nara Women’s University, Nara 630-8506, Japan

and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

(JLQCD Collaboration)

(Received 7 June 2018; revised manuscript received 17 August 2018; published 25 September 2018)

We calculate the scalar and tensor charges of the nucleon in 2þ 1-flavor lattice QCD, for which the
systematics of the renormalization of the disconnected diagram is well controlled. Numerical simulations
are performed at a single lattice spacing a ¼ 0.11 fm. We simulate four pion masses, which cover a range
ofmπ ∼ 290–540 MeV, and a single strange quark mass close to its physical value. The statistical accuracy
is improved by employing the so-called low-mode averaging technique and the truncated solver method.
We study up, down, and strange quark contributions to the nucleon charges by calculating disconnected
diagrams using the all-to-all quark propagator. Chiral symmetry is exactly preserved by using the overlap
quark action to avoid operator mixing among different flavors, which complicates the renormalization of
scalar and tensor matrix elements and leads to possibly large contamination to the small strange quark
contributions. We also study the nucleon axial charge with a contribution from the disconnected diagram.
Our results are in reasonable agreement with experiments and previous lattice studies.

DOI: 10.1103/PhysRevD.98.054516

I. INTRODUCTION

The nucleon charges are very important input parameters
in the study of new physics beyond the standard model, and
accurate values are required in phenomenological analyses.
As a representative case, the nucleon scalar charge is
important in the direct search for dark matters [1–4].
The nucleon tensor charge relates the quark electric dipole
moment to that of the nucleon, which is an important
observable in the search for new sources of CP violation
[5,6]. The nucleon scalar and tensor charges are however
difficult to directly measure in experiments, and no accurate

experimental values are currently known. They are thus
important subjects to be studied in lattice QCD, since it is
the only known method to calculate hadronic quantities
with controlled uncertainties.
The nucleon charges have widely been studied in the

literature. The evaluation of the nucleon scalar charge in
lattice QCD first began in the context of the investigation of
the nucleon sigma term σπN ≡P

q¼u;d
mq

2mN
hNjq̄qjNi. It is

still a matter of debate due to the discrepancy between
results of recent lattice QCD calculations at the physical pion
mass, yielding values between 30 to 40 MeV [7–11], and
phenomenological ones, giving almost 60MeV [12–16]. The
nucleon scalar charge also contains the isovector one as well
as the strange content of the nucleon, which are now showing
importance in the analysis of new physics beyond stan-
dard model.
The nucleon tensor charge is the leading twist contri-

bution to the transversity distribution, one of the three
parton distribution functions of the polarized nucleon [17].

*yamanaka@ipno.in2p3.fr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 054516 (2018)

2470-0010=2018=98(5)=054516(18) 054516-1 Published by the American Physical Society

 

Nucleon charges with dynamical overlap fermions

N. Yamanaka*
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bution to the transversity distribution, one of the three
parton distribution functions of the polarized nucleon [17].
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We calculate the scalar and tensor charges of the nucleon in 2þ 1-flavor lattice QCD, for which the
systematics of the renormalization of the disconnected diagram is well controlled. Numerical simulations
are performed at a single lattice spacing a ¼ 0.11 fm. We simulate four pion masses, which cover a range
ofmπ ∼ 290–540 MeV, and a single strange quark mass close to its physical value. The statistical accuracy
is improved by employing the so-called low-mode averaging technique and the truncated solver method.
We study up, down, and strange quark contributions to the nucleon charges by calculating disconnected
diagrams using the all-to-all quark propagator. Chiral symmetry is exactly preserved by using the overlap
quark action to avoid operator mixing among different flavors, which complicates the renormalization of
scalar and tensor matrix elements and leads to possibly large contamination to the small strange quark
contributions. We also study the nucleon axial charge with a contribution from the disconnected diagram.
Our results are in reasonable agreement with experiments and previous lattice studies.

DOI: 10.1103/PhysRevD.98.054516

I. INTRODUCTION

The nucleon charges are very important input parameters
in the study of new physics beyond the standard model, and
accurate values are required in phenomenological analyses.
As a representative case, the nucleon scalar charge is
important in the direct search for dark matters [1–4].
The nucleon tensor charge relates the quark electric dipole
moment to that of the nucleon, which is an important
observable in the search for new sources of CP violation
[5,6]. The nucleon scalar and tensor charges are however
difficult to directly measure in experiments, and no accurate

experimental values are currently known. They are thus
important subjects to be studied in lattice QCD, since it is
the only known method to calculate hadronic quantities
with controlled uncertainties.
The nucleon charges have widely been studied in the

literature. The evaluation of the nucleon scalar charge in
lattice QCD first began in the context of the investigation of
the nucleon sigma term σπN ≡P

q¼u;d
mq

2mN
hNjq̄qjNi. It is

still a matter of debate due to the discrepancy between
results of recent lattice QCD calculations at the physical pion
mass, yielding values between 30 to 40 MeV [7–11], and
phenomenological ones, giving almost 60MeV [12–16]. The
nucleon scalar charge also contains the isovector one as well
as the strange content of the nucleon, which are now showing
importance in the analysis of new physics beyond stan-
dard model.
The nucleon tensor charge is the leading twist contri-

bution to the transversity distribution, one of the three
parton distribution functions of the polarized nucleon [17].
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et al., 

Pion-nucleon sigma term spN ``distribution’’

The value of spN has not been determined accurately enough:

=> It seems to be very interesting to determine the spN value by the deeply bound 
pionic atoms.

spN= 25~60 MeV 

PRL127, 24 (2021)
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FIG. 1: Density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. I will correct the figure. I need to put the y-axis
label.

C. the potential parameters b0 and b1 and the �⇡N term

The b1 parameter in the pion-nucleus potential corresponds to the in-medium value b1(⇢), and b1(⇢) is known to
be the connection of the �⇡N term as,

b1(⇢) = bfree1
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where bfree1 is the free-space ⇡N isovector parameter, and f⇡ is the free-space pion decay constant. With the intro-
duction of Eq. (12), we can see the e↵ect of the �⇡N term via b1 parameter in the pion-nucleus potential.

Furthermore, we consider the double-scattering contributions for the b0 parameter in the pion-nucleus potential
Vopt as
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where the local nuclear density is ⇢ = 2p3F /(3⇡
2) with the local Fermi momentum pF . In the r.h.s of Eq. (13), the b0

parameter is the free-space ⇡N isoscalar parameter, and the b1 parameter indicates the in-medium parameter b1(⇢)
of Eq. (12).

In Refs. [6, 7], they use these values of f⇡ = 92.2 MeV, bfree0 = 0.0076 m�1
⇡ , bfree1 = �0.0861 m�1

⇡ , �⇡N = 57±7 MeV.
We will change the value �⇡N from 30 25 MeV to 60 MeV, and then see the sensitivity for the cross section of the

deeply bound pionic atom.

III. RESULTS

In Fig. 1, we show the density dependence of the b0(⇢) and b1(⇢) for the di↵erent �⇡N term. The three values
�⇡N 25, 45, 60 MeV are considered. The parameters b0 and b1, especially b1, have the strong density dependence.
The larger �⇡N has stronger density dependence of the parameters, and thus the pion-nucleus optical potential has a
stronger repulsive e↵ect. By looking at the parameters b0 and b1 in Table I; Set (I) b0 = �0.0283m�1

⇡ , b1 = �0.12m�1
⇡ ,

and Set (II) b0 = �0.0226 m�1
⇡ , b1 = �0.1257 m�1

⇡ , these parameters are located between the �⇡N = 45 MeV and
the �⇡N = 60 MeV.

We calculate the structure of the pionic state in 123Sn with the parameters b0(⇢) and b1(⇢). In Fig. 2, we plot the
�⇡N dependence of the binding energies and widths in the pionic state of 123Sn. We can see that the binding energy
of 1s state has been strongly a↵ected by the �⇡N . The wave functions of the pionic 1s, 2p and 2s states in 123Sn for
the di↵erent �⇡N = 20, 45, 60 MeV are shown in Fig. 3.
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FIG. 7: Formation cross section in the 112Sn(d,3He) reaction for the di↵erent angles. Left, middle and right panel is the result
for ✓dHe = 0�, 1�, 2�, respectively. The calculations are done with the parameter set (I).
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EXTRACTING �⇡N FROM PIONIC ATOMS
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We discuss a recent extraction of the ⇡N � term �⇡N from a large-scale
fit of pionic-atom strong-interaction data across the periodic table. The
value thus derived, �FG

⇡N = 57± 7 MeV, is directly connected via the Gell-
Mann–Oakes–Renner expression to the medium-renormalized ⇡N isovector
scattering amplitude near threshold. It compares well with the value de-
rived recently by the Bern–Bonn–Jülich group, �RS

⇡N = 58 ± 5 MeV, using
the Roy–Steiner equations to control the extrapolation of the vanishingly
small near-threshold ⇡N isoscalar scattering amplitude to zero pion mass.
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1. Introduction

The ⇡N � term

�⇡N =
m̄q

2mN

X

u,d

hN |q̄q|Ni , m̄q =
1

2
(mu +md) , (1)

sometimes called the nucleon � term �N , records the contribution of explicit
chiral symmetry breaking to the nucleon mass mN arising from the non-
zero value of the u and d quark masses in QCD. Early calculations yielded
a wide range of values, �⇡N ⇠ 20–80 MeV [1]. Recent calculations use two
distinct approaches: (i) pion–nucleon low-energy phenomenology guided by
chiral EFT, with or without solving Roy–Steiner equations, result in values
of �⇡N ⇠ 50–60 MeV [2–6], the most recent of which is 58± 5 MeV; and (ii)
lattice QCD (LQCD) calculations reach values of �⇡N ⇠ 30–50 MeV [7–13],
the most recent of which is 41.6±3.8 MeV. This dichotomy is demonstrated
in the left panel of Fig. 1. However, when augmented by chiral perturbation
expansions, LQCD calculations reach also values of ⇠ 50 MeV, see e.g.
Refs. [14–17]. Ambiguities in chiral extrapolations of LQCD calculations
to the physical pion mass are demonstrated in the right panel of Fig. 1.

⇤
Presented by A. Gal at the 3rd Jagiellonian Symposium on Fundamental and Applied

Subatomic Physics, Kraków, Poland, June 23–28, 2019.

(45)

 Pion-Nucleus optical potential

• The spN value determined by the existing pionic atom data was reported: 

We especially focus on the observables of the high-precision deeply bound 
pionic states



spN term dependence of the pionic atom observables
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N. Ikeno, T. Nishi, K. Itahashi, N. Nose-Togawa, A. 
Tani, S. Hirenzaki, arXiv:2204.09211 [nucl-th]  

We can see clearly the strong sensitivities of the observables to spN
=> It would be interesting to determine spN values from experimental data



Future Outlook
• Beyond the linear density (model independent) 
• Another prescription ?,  GOR with b0 for mass ?

• Pionic atom in unstable nuclei by inverse kinematics
chiral symmetry restoration in asymmetric nuclear matter, 
structure of unstable nuclei by pion
Exp. of the d(136Xe,3He) at RIKEN in a few years ? K. Itahishi et al. 
Old works: Y. Umemoto et al. NPA679(2001)549, S. Hirenzaki et al. PLB194 (1987)20, 

• Improvement of the theoretical calculations:
To reproduce quantitatively the data by
T. Nishi, K. Itahashi et al., PRL120, 152505 (2018)

• Extension to other meson systems
• Combined analysis with transport models such as JAM (for heavier meson sys.)

(Y. Higashi,  Master‘s thesis (Nara Women’s 2015)) etc…. 37


