The 17th Hadron Spectroscopy Cafe "Pionic atom experiments and chiral symmetry restoration in nuclei"

Theoretical study of Deeply Bound Pionic Atoms

(A cúrtain-ràiser)

S. Hirenzaki (Nara Women' s Univ.) N. Ikeno (Tottori Univ., now in TEXAS, USA) (Many Ikeno-san' s slides are used.)

Time/Date : 13:00-14:30 Satoru Hirenzaki, 15:00-16:30 Kenta Itahashi, 6 February (Mon.) 2023 Place : Tokyo Institute of Technology Ookayama Campus, Lecture Theatre

Meson-nucleus bound system

REAL meson exists inside and/or very close to the nuclear surface

Mesonic Atoms: Strong+Coulomb interaction <u>Pionic atom</u>, Kaonic atom

 π meson

 $m_{\pi} \sim 140 \text{ MeV}$

Mesonic Nuclei: Strong interaction K, η, η', ... meson-nucleus

Coulomb + Strong Interaction

Typical energy scale: B.E \sim keV- MeV

Pionic atom

Interest and Motivation

1. Exotic Many Body Physics: Interaction, Structure, Formation

Like unstable nuclei, hypernuclei ... etc. \Rightarrow Extension of the research area of nuclear physics

2. Meson properties at finite density: Aspect of QCD symmetries

in the nucleus from the vacuum?

C. Batty, E. Friedman, and A. Gal, Phys. Rep. 287(97)385

Pionic atoms

(n=3)

(n=3)

(n=4)

The deeply bound states such as 1s and 2p states in heavy nuclei could not be observed because of the absorption

Deeply" Bound Pionic Atom

Difficulity in X-ray spectroscopy

1400 energy [keV] 1450

Fig. 6. This figure displays the 4f→3d hyperfine complex of the prompt pionic ¹⁰⁰Bi X-ray spectrum. The solid line represents the fit to the experimental data points. Also shown are the background (see text) and the resulting 4f→3d line. The various y-rays also included in the fitting procedure have been identified as transitions mainly in Pb isotopes in the mass region A - 200-206 as a result of pion and muon capture. C.T.A.M. De Laat, et al., Nucl.Phys.A523:453-487,1991.

Structure of the pionic atoms

> Klein-Gordon equation: $[-\nabla^2 + \mu^2 + 2\mu V_{opt}(r)]\phi(\mathbf{r}) = [E - V_{coul}(r)]^2\phi(\mathbf{r})$

➢ Pion-Nucleus Optical Potential : $2\mu V_{\text{opt}}(r) = -4\pi [b(r) + \varepsilon_2 B_0 \rho^2(r)] + 4\pi \nabla \cdot [c(r) + \varepsilon_2^{-1} C_0 \rho^2(r)] L(r) \nabla$ s-wave term p-wave term 10 $b(r) = \varepsilon_1 \{ b_0 \rho(r) + b_1 [\rho_n(r) - \rho_p(r)] \}$ Vcoul+ReVopt $c(r) = \varepsilon_1^{-1} \{ c_0 \rho(r) + c_1 [\rho_n(r) - \rho_p(r)] \}$ **ImV**opt Potential [MeV] 0 $L(r) = \{1 + \frac{4}{3}\pi\lambda[c(r) + \varepsilon_2^{-1}C_0\rho^2(r)]\}^{-1}$ M. Ericson, T. E. O Ericson, Ann. Phys.36(66)496 -10 R. Seki, K. Masutani, PRC27(83)2799 Vcoul -¹²¹Sn -20 Strong interaction s-wave terms are repulsive \checkmark 10 20 30 40 Pocket structure near the nuclear surface r [fm]

Radius of ¹²¹Sn

6

Optical pot. by Dyson eq.

$$\begin{split} iD^{0}(q^{\mu}) &= \frac{i}{q^{2} - m_{\pi}^{2} + i\varepsilon} \\ iD(q^{\mu}) &= iD^{0} + iD^{0}(-i\Pi)iD^{0} + iD^{0}(-i\Pi)iD^{0}(-i\Pi)iD^{0} + ... \\ &= i(D^{0} + D^{0}\Pi D^{0} + D^{0}\Pi D^{0}\Pi D^{0} + ...) \\ &= iD^{0}(q^{\mu}) + iD^{0}(q^{\mu})\Pi(q^{\mu})D(q^{\mu}), \\ iD(q^{\mu}) &= \frac{iD^{0}(q^{\mu})}{1 - D^{0}(q^{\mu})\Pi(q^{\mu})} = \frac{i}{(D^{0}(q^{\mu}))^{-1} - \Pi(q^{\mu})} = \frac{i}{q^{2} - m_{\pi}^{2} - \Pi(q^{\mu})} \\ H &= D^{-1} = q^{2} - m_{\pi}^{2} - \Pi(q^{\mu}) \\ \Pi(q^{\mu}) &= \Sigma \Pi^{\text{irreducible}} \quad \clubsuit \text{ Optical Potential} \end{split}$$

Ex.) Kolomeitsev, Kaiser, & W. Weise, Phys.Rev.Lett. 90 ('03) $\Pi_{tot}(\omega; \rho_p, \rho_n) = \Pi(\omega) + \Delta \Pi_{S}(\omega; \rho_p, \rho_n)$ (ChPT up to NNLO) + (Pheno. 2-body abs.) $+ \Pi_{P}(\omega; \rho_p, \rho_n),$ +(Pheno. Pwave)

s-wave interaction \rightarrow s state p-wave interaction \rightarrow higher partial wave states

Fig. 8 The calculated energy levels with the several combinations of the potential terms are shown in the solid lines for 1*s* state and dotted lines for the 2*p* state in ¹²³Sn. The level widths are indicated by the hatched area. The potential terms included in the calculation for the energy levels are (a) the electromagnetic interaction V_{em} , (b) V_{em} and the isoscalar *s*-wave interaction (b_0 term), (c) V_{em} , b_0 term, and the isovector *s*-wave interaction (b_1 term), (d) V_{em} and the whole part of the local potential (*b*'s and B_0 terms), and (e) the full potential (V_{em} and V_{opt}).

How to observe meson in nucleus (modern)

• Missing mass: $1+2 \rightarrow 3+X$ (d + A $\rightarrow 3He+\pi Atom$)

 $M_{\rm miss}^2 = (E_1 + E_2 - E_3)^2 - (\vec{p_1} + \vec{p_2} - \vec{p_3})^2$

(X is NOT observed)

• Invariant mass: $X \rightarrow 1+2$ ($\phi \rightarrow e^- + e^+$)

$$p^{\mu}_{\phi} = p^{\mu}_{-} + p^{\mu}_{+}$$
 $m_{\rm inv} = \sqrt{(p_{-} + p_{+})^2}$

(Outside decay background, FSI)

Effective number approach

- Factorization of elementary process cross section
- Use of known experimental data (e.g., nuclear response)
- Good approach to the mesonic atom systems with relatively narrow widths

> (d,³He) reaction H. Toki *et al.*, NPA530(91)679; S. Hirenzaki *et al.*, PRC44(91)2472 d + Nucleus \rightarrow ³He + π atom 1 neutron pick up reaction

S matrix:

$$S_{fi} = \int dt d\mathbf{r} \sqrt{\frac{M_{\text{He}}}{E_{\text{He}}}} \frac{1}{\sqrt{V}} e^{iE_{\text{He}}t} \chi_{\text{He}}^*(\mathbf{r}) \sqrt{\frac{1}{2E_{\pi}}} e^{iE_{\pi}t} \phi_{\pi}^*(\mathbf{r}) \frac{iT(p_d, p_n, p_{\text{He}}, p_{\pi})}{\Gamma} \sqrt{\frac{M_d}{E_d}} \frac{1}{\sqrt{V}} e^{-iE_dt} \chi_d(\mathbf{r}) \sqrt{\frac{M_n}{E_n}} e^{-iE_nt} \psi_n(\mathbf{r})$$

wave function for each particle

will be replaced by the elementary cross section later

Effective number approach

$$\left(\frac{d^2\sigma}{dE_{\rm He}d\Omega_{\rm He}}\right)_A^{\rm lab} = \left(\frac{d\sigma}{d\Omega_{\rm He}}\right)_{\rm ele}^{\rm lab} \sum_{ph} K\left(\frac{\Gamma}{2\pi}\frac{1}{\Delta E^2 + \Gamma^2/4}N_{\rm eff} + \frac{2p_{\pi}E_{\pi}}{\pi}N_{\rm eff}\right)$$

 $\Delta E = Q + m_{\pi} - B_{\pi} + Sn - 6.787 MeV$ Bound region Quasi-elastic region

- Elementary cross section $\left(\frac{d\sigma}{d\Omega_{\text{He}}}\right)_{\text{ele}}^{\text{lab}}$: Experimental data (d+n \rightarrow ³He + π ⁻)
- **Kinematical correction factor:** Difference of kinematics between $d+n \rightarrow {}^{3}He + \pi^{-}$ and $K = \begin{bmatrix} \frac{|\vec{p}_{He}^{A}|}{|\vec{p}_{He}|} \frac{E_{n}E_{\pi}}{E_{n}^{A}E_{\pi}^{A}} \left(1 + \frac{E_{He}}{E_{\pi}} \frac{|\vec{p}_{He}| - |\vec{p}_{d}|\cos\theta_{dHe}}{|\vec{p}_{He}|}\right) \end{bmatrix}^{lab} \qquad A(d,{}^{3}He)(A-1) \bigotimes \pi^{-}$
- Effective Number: $N_{\text{eff}} = \sum_{JMm} \left| \int d\vec{r} e^{i\vec{q}\cdot\vec{r}} D(\vec{r}) \xi^{\dagger}_{\frac{1}{2}m} [\phi^*_{\ell_{\pi}}(\vec{r}) \otimes \psi_{j_n}(\vec{r})]_{JM} \right|^2 \qquad \begin{array}{l} \mathsf{D}(\mathbf{r}) : \text{Distortion factor} \\ \mathsf{q} : \text{ Momentum transfer} \\ \psi_{j_n} : \text{Neutron wave function} \end{array}$
- * Information on the nuclear response in one neutron pick-up reaction

$$N_{\text{eff}} \to N_{\text{eff}}(\ell_{\pi} \otimes j_{n}^{-1}) \times F_{O}(j_{n}) \times \begin{cases} F_{R}((j_{n}^{-1})_{1}), \\ F_{R}((j_{n}^{-1})_{2}), \\ \dots \\ F_{R}((j_{n}^{-1})_{N}), \end{cases}$$

 F_{O} : Neutron occupation probabilities in the target

 F_R : Relative strength factor of the N-th excited states in the daughter nucleus 13

Expected (d,³He) spectra

Quasi-Eastic Meson Production

Observed (d,³He) spectra

(d,³He) reaction H. Toki, *et al.*, NPA530(91)679; S. Hirenzaki *et al.*, PRC44(91)2472

Observation of the deeply bound pionic state for the first time

Role of the momentum transfer q in the reaction

- Large $q \Rightarrow$ Cross section becomes small (generally)
- Matching condition of the angular momentum transfer L and the momentum transfer q

$$L = [\ell_{\pi} \otimes \ell_n^{-1}] \simeq qR = q \times (Nuclear Radius)$$

=> the matching condition plays an important role in determining the largely populated subcomponents

> $(d^{3}He)$ reaction $q=|p_{d}-p_{He}|$

- Forward angle: It can be recoilless (q~0)
 ⇒ Enhanced formation with L~0 state (s-state contributions relatively large)
- Finite angles: Larger q
 ⇒ Enhanced formation with large L state

Sn=0 MeV, B.E.=0 MeV

¹²²Sn(d,³He) spectrum $[(n\ell)_{\pi} \otimes (n\ell_i)_n^{-1}]$

1 neutron pickup reaction without π production Exp. Data: ¹²²Sn(d,t)¹²¹Sn E. J. Schneid et al.

Phys. Rev. 156 (1967) 1316

Neutron hole orbit j_h	Ex [MeV]
3s1/2	0.06
2d3/2	0.00
2d5/2	1.11
	1.37
1g7/2	0.90
1h11/2	0.05

New Exp. data: S.V. Szwec et al., PRC104 (2021) 054308

Energy resolution $\Delta E=300 \text{keV}$

- We can see the large peak structure of pionic 1s state

- Combination of the pionic 1s state and neutron-hole 3s1/2 state

¹²²Sn(d,³He) spectra at Finite angles

Spectra have a strong angular dependence.

¹²²Sn(d,³He) spectra at Finite angles

We can obtain information on the deeply bound pionic **2***p* state in addition to **1***s* and **2***s* states.

Extension to the study of the odd-neutron nuclear target

S. Hirenzaki et al. PRC60(99)058202:

PRC71(05)061601(R)

Even-Even Nucleus: J^p=0⁺

Pionic atoms: pion particle - neutron hole $[\pi \otimes n^{-1}]$

`Residual interaction effect"

- Energy shift
- Level splitting between different J state

Shift of Peak position in the spectra

Additional difficulty to determine B.E. and pion property in the nucleus

Interests of Odd target

Pionic state free from residual interaction effect $[\pi^- \otimes 0^+]$

 \Rightarrow Expect to extract more accurate information than even targets from data.

¹¹⁶ Sn complex energy shift					
j1	1s [keV]	2p [keV]			
$3s_{1/2}^{-1}$	-15.4-4.2i	J=1/2 -4.0-1.1i			
		J=3/2 -4.0-1.1i			
$2d_{3/2}^{-1}$	-15.9-4.8i	J=1/2 -9.1-3.1i			
		J=3/2 0.3+0.3i			
		J=5/2 -5.2-1.8i			
Exp. Error ± 24 [keV] @GSI					

Formulation: Effective Number

> Realistic neutron configurations for the target and the daughter nucleus: Exp. Data

Even target: ¹²²Sn (0⁺)

Excited level of ¹²¹Sn

Exp. Data: ¹²²Sn(d,t)¹²¹Sn

E. J. Schneid et al., Phys. Rev. 156 (1967) 1316

/]	Ex [MeV]	Neutron hole orbit j _h
	0.06	3s1/2
i ja	0.00	2d3/2
*214	1.11	2d5/2
	1.37	
	0.90	1g7/2
	0.05	1h11/2

New Exp. data: S.V. Szwec et al., PRC104 (2021) 054308

✓ Many excited levels✓ Large excitation energies (Ex)

Pionic atom formation spectra: Expected to be

complicated and broad spectra

Odd target: ¹¹⁷**Sn (1/2**⁺)

Excited level of ¹¹⁶Sn

Exp. Data: ¹¹⁷Sn(d,t)¹¹⁶Sn, J. M. Schippers et al., NPA510(1990)70

	Jp	Neutron hole orbit j _h	Ex [MeV]	
_	0+	3s1/2	0.00	
			1.76	
			2.03	U
_			2.55	
	1+	2d3/2	2.59	
_			2.96	
	2+	2d3/2 and 2d5/2	1.29	
			2.23	
			3.23	
			3.37	
			3.47	
			3.59	S ₁ /
			3.77	
_			3.95	
	3+	2d5/2 and 1g7/2	3.00	- Jh
			3.42	
)			3.71	
\ _		1g7/2	3.18	,
	4+	1g7/2	2.39	
			2.53	
5			2.80	
ð	<u> </u>		3.05	
<u>×</u>	س		3.10	
_	5-	1h11/2	2.37	
	6-	1h11/2	2.77 🗕	24

Odd target

Neutron wave function: H. Koura *et al.*, NPA671(00)96

Energy resolution $\Delta E=300 \text{keV}$

Dominant Subcomponent: $[(n\ell)_{\pi} \otimes J^{P}]$

- We can see clear peak structure of $[(1s)_{\pi} \otimes {}^{116}Sn(0^{+})]$
 - No residual interaction effect

Interest and Motivation (1) New exotic Hadron many body systems (2) Baryon resonances at finite density $N^*(1535) \quad \Lambda(1405)$

(3) Aspects of the Strong Int.Symmetry

 π^{-}

In-medium pion and Chiral sym.

In-medium property of pion

0.1 0.0

1.0

free value Юн

Some memos for pi atom

Basic Story (Prediction, Observation, Feedback)

- Observe meson in nucleus (B.E., Width, , , ,)
- Deduce in-medium meson properties (b1, , ,)
- Relate them to fundamental parameters

(Condensate, , ,)

Some points

* States with <u>well-defined quantum numbers</u>

(something like "selection rule")

- * <u>Exclusive information (</u> s-wave isovector int., ,)
- * <u>Reliable connection</u> between Theoretical formula and Exp. Result
- * <u>Model independent</u> theoretical treatment (... for feedback/fitting)

In reality, we need some phenomenological pieces.

In-medium Chiral sym.

In-medium property of pion

$\alpha \rho_0$	0.5	0.4	0.3	0.2	0.1	0.0
b1 ^{free} (b1)	0.7		0.8	0.9	9	1.0
	. 205p	b	_			,
		123,1	^{19,115} Sn,			free value ⊢⊖⊣

Pion-Nucleus optical potential

$$2\mu V_{\text{opt}}^s = -4\pi [\varepsilon_1 \{b_0 \rho(r) + b_1 \delta \rho(r)\} + \varepsilon_2 B_0 \rho^2(r)]$$

✓ b1 determination, Comparison with value in vacuum ✓ Relation between $b_1 \Leftrightarrow f_\pi \Leftrightarrow \langle \overline{q}q \rangle$

- Tomozawa Weinberg (TW) relation $T_{\pi A}^{(-)} = -4\pi\varepsilon_1 b_1 = \frac{\omega}{2f_{\pi}^{*2}}$ • Gell-Mann – Oakes – Renner (GOR) relation $m_{\pi}^2 f_{\pi}^{*2} = -2m_q \langle \bar{q}q \rangle_{\rho}$ $\Rightarrow \frac{\langle \bar{q}q \rangle_{\rho}}{\langle \bar{q}q \rangle_0} \simeq \frac{f_{\pi}^{*2}}{f_{\pi}^2} \simeq \frac{b_1^{\text{free}}}{b_1^*(\rho)} = 0.78 @ \rho \simeq 0.6\rho_0$ $\sim 0.67 @ \rho = \rho_0$
 - Data corresponds to info. at <u>Effective Density</u>

Parameter correlation and Effective density

R. Seki, K. Masutani, Phys. Rev. C27(1983)2799

Parameter correlation and Effective density

: Overlapping density

T. Yamazaki.

S. Hirenzaki

Model independent analysis (here low density expressions)

In-medium pion and partial restoration of chiral symmetry D. Jido^{a,*}, T. Hatsuda^b, T. Kunihiro^{a,c} Physics Letters B 670 (2008) 109–113

$$\frac{\langle \bar{q}q \rangle^*}{\langle \bar{q}q \rangle} \simeq \left(\frac{b_1}{b_1^*}\right)^{1/2} \left(1 - \gamma \frac{\rho}{\rho_0}\right) \qquad \text{, where} \qquad Z_\pi^{*1/2} \equiv \left(\frac{G_\pi^*}{G_\pi}\right)^{1/2} = 1 - \gamma \frac{\rho}{\rho_0}$$

* Model independent (low density expression) * Z_{π} : wave function renormalization * Equivalent to GOR * m_{π} * not necessary (but scattering length)

In-medium GOR

$$\left(F_{\pi}^{t}\right)^{2} m_{\pi}^{*2} = -2m_{q} \langle \bar{q}q \rangle^{*}, \quad \Rightarrow \quad \left(\frac{F_{\pi}^{t}}{F_{\pi}}\right)^{2} \left(\frac{m_{\pi}^{*}}{m_{\pi}}\right)^{2} = \frac{\langle \bar{q}q \rangle^{*}}{\langle \bar{q}q \rangle}$$

→ Adopt these theoretical relations at the effective density

The value of $\sigma_{\pi N}$ has not been determined accurately enough: $\sigma_{\pi N} = 25 \sim 60 \text{ MeV}$

=> It seems to be very interesting to determine the $\sigma_{\pi N}$ value by the deeply bound pionic atoms.

 $\sigma_{\pi N} \text{ term in the optical potential } \sigma_{\pi N} \text{ term in term in the optical potential } \sigma_{\pi N} \text{ term$

> Pion-Nucleus optical potential $2\mu V_{opt}(r) = -4\pi [b(r) + \varepsilon_2 B_0 \rho^2(r)] + 4\pi \nabla \cdot [c(r) + \varepsilon_2^{-1} C_0 \rho^2(r)] L(r) \nabla$ $b(r) = \varepsilon_1 \{b_0 \rho(r) + b_1 [\rho_n(r) - \rho_p(r)]\}$ $c(r) = \varepsilon_1^{-1} \{c_0 \rho(r) + c_1 [\rho_n(r) - \rho_p(r)]\}$ $L(r) = \{1 + \frac{4}{3}\pi \lambda [c(r) + \varepsilon_2^{-1} C_0 \rho^2(r)]\}^{-1}$

$$b_1(\rho) = b_1^{\text{free}} \left(1 - \frac{\sigma_{\pi N}}{m_\pi^2 f_\pi^2} \rho \right)^{-1}, \qquad b_0(\rho) = b_0^{\text{free}} - \varepsilon_1 \frac{3}{2\pi} (b_0^{\text{free}2} + 2b_1^2(\rho)) \left(\frac{3\pi^2}{2} \rho \right)^{1/3}$$

The σ_{πN} value determined by the existing pionic atom data was reported:
 χ² fitting for (all) atomic data (BE, Width)
 σ^{FG}_{πN} = 57 ± 7 MeV, E. Friedman and A. Gal, Phys. Lett. B **792**, 340 (2019). E. Friedman and A. Gal, Acta Phys. Polon. B **51**, 45-54 (2020).

We especially focus on the observables of the high-precision deeply bound pionic states

$\sigma_{\pi N}$ term dependence of the pionic atom observables

We can see clearly the strong sensitivities of the observables to $\sigma_{\pi N}$ => It would be interesting to determine $\sigma_{\pi N}$ values from experimental data

Future Outlook

- Beyond the linear density (model independent)
- Another prescription ?, GOR with b₀ for mass ?
- Pionic atom in unstable nuclei by inverse kinematics chiral symmetry restoration in asymmetric nuclear matter, structure of unstable nuclei by pion
 Exp. of the d(¹³⁶Xe,³He) at RIKEN in a few years ? K. Itahishi et al. Old works: Y. Umemoto et al. NPA679(2001)549, S. Hirenzaki et al. PLB194 (1987)20,
- Improvement of the theoretical calculations: To reproduce quantitatively the data by T. Nishi, K. Itahashi et al., PRL120, 152505 (2018)

- Extension to other meson systems
- Combined analysis with transport models such as JAM (for heavier meson sys.) (Y. Higashi, Master's thesis (Nara Women's 2015))
 etc.... 37