The 17th Hadron Spectroscopy Cafe
"Pionic atom experiments and chiral symmetry restoration in nuclei"

Theoretical study of Deeply Bound Pionic Atoms

(A cúrtain-ràiser)

S. Hirenzaki (Nara Women' s Univ.)
N. Ikeno (Tottori Univ., now in TEXAS, USA)
(Many Ikeno-san's slides are used.)

Time/Date : 13:00-14:30 Satoru Hirenzaki, 15:00-16:30 Kenta Itahashi, 6 February (Mon.) 2023
Place: Tokyo Institute of Technology Ookayama Campus, Lecture Theatre

Meson-nucleus bound system

REAL meson exists inside and/or very close to the nuclear surface
\square Mesonic Atoms: Strong+Coulomb interaction Pionic atom, Kaonic atom
\square Mesonic Nuclei: Strong interaction $K, \eta, \eta^{\prime}, \ldots$ meson-nucleus

Pionic atom

(cf.) Normal atom

Coulomb + Strong Interaction
Typical energy scale:
B.E $\sim \mathrm{keV}-\mathrm{MeV}$

Coulomb Interaction
B.E. $\sim \mathrm{eV}$

Interest and Motivation

1. Exotic Many Body Physics:

Interaction, Structure, Formation
Like unstable nuclei, hypernuclei ... etc.
\Rightarrow Extension of the research area of nuclear physics

2. Meson properties at finite density: Aspect of QCD symmetries

Chiral symmetry Spontaneous, Explicit breaking@Vacuum

Partial restoration @Nuclear density

How to observe the exotic atoms (traditional)

X-ray spectroscopy (1950s~)

C. Batty, E. Friedman, and A. Gal, Phys. Rep. 287(97)385

The deeply bound states such as 1 s and $2 p$ states in heavy nuclei could not be observed because of the absorption

Difficulity in X-ray spectroscopy

Structure of the pionic atoms

$>$ Klein-Gordon equation:

$$
\left[-\nabla^{2}+\mu^{2}+2 \mu V_{\text {opt }}(r)\right] \phi(\mathbf{r})=\left[E-V_{\text {coul }}(r)\right]^{2} \phi(\mathbf{r})
$$

>Pion-Nucleus Optical Potential :

$$
2 \mu V_{\text {opt }}(r)=\frac{-4 \pi\left[b(r)+\varepsilon_{2} B_{0} \rho^{2}(r)\right]}{s \text {-wave term }}+\frac{4 \pi \nabla \cdot\left[c(r)+\varepsilon_{2}^{-1} C_{0} \rho^{2}(r)\right] L(r) \nabla}{\rho \text {-wave term }}
$$

$$
b(r)=\varepsilon_{1}\left\{b_{0} \rho(r)+b_{1}\left[\rho_{n}(r)-\rho_{p}(r)\right]\right\}
$$

$$
c(r)=\varepsilon_{1}^{-1}\left\{c_{0} \rho(r)+c_{1}\left[\rho_{n}(r)-\rho_{p}(r)\right]\right\}
$$

$$
L(r)=\left\{1+\frac{4}{3} \pi \lambda\left[c(r)+\varepsilon_{2}^{-1} C_{0} \rho^{2}(r)\right]\right\}^{-1}
$$

M. Ericson, T. E. O Ericson, Ann. Phys.36(66)496 R. Seki, K. Masutani, PRC27(83)2799
\checkmark Strong interaction s-wave terms are repulsive
\checkmark Pocket structure near the nuclear surface

Optical pot. by Dyson eq.

$$
\left.\begin{array}{rl}
i D^{0}\left(q^{\mu}\right) & =\frac{i}{q^{2}-m_{\pi}^{2}+i \varepsilon} \\
i D\left(q^{\mu}\right)= & i D^{0}+i D^{0}(-i \Pi) i D^{0}+i D^{0}(-i \Pi) i D^{0}(-i \Pi) i D^{0}+\ldots \\
& =i\left(D^{0}+D^{0} \Pi D^{0}+D^{0} \Pi D^{0} \Pi D^{0}+\ldots\right) \\
& =i D^{0}\left(q^{\mu}\right)+i D^{0}\left(q^{\mu}\right) \Pi\left(q^{\mu}\right) D\left(q^{\mu}\right),
\end{array}\right\} \begin{aligned}
i D\left(q^{\mu}\right)= & \frac{i D^{0}\left(q^{\mu}\right)}{1-D^{0}\left(q^{\mu}\right) \Pi\left(q^{\mu}\right)}=\frac{i}{\left(D^{0}\left(q^{\mu}\right)\right)^{-1}-\Pi\left(q^{\mu}\right)}=\frac{i}{q^{2}-m_{\pi}^{2}-\Pi\left(q^{\mu}\right)} \\
& H=D^{-1}=q^{2}-m_{\pi}^{2}-\Pi\left(q^{\mu}\right) \\
& \Pi\left(q^{\mu}\right)=\Sigma \Pi^{\text {irreducible } \quad \rightarrow \text { Optical Potential }}
\end{aligned}
$$

Ex.) Kolomeitsev, Kaiser, \& W. Weise, Phys.Rev.Lett. 90 ('03)

$$
\begin{aligned}
\Pi_{\mathrm{tot}}\left(\omega ; \rho_{p}, \rho_{n}\right)= & \Pi(\omega)+\Delta \Pi_{\mathrm{S}}\left(\omega ; \rho_{p}, \rho_{n}\right) & & \text { (ChPT up to NNLO) + (Pheno. 2-body abs.) } \\
& +\Pi_{\mathrm{P}}\left(\omega ; \rho_{p}, \rho_{n}\right), & & +(\text { Pheno. Pwave })
\end{aligned}
$$

Structure of the pionic atoms

Deeply bound pionic states $\mathbf{1 s}, \mathbf{2 s , 2 p}$:
Strong interaction effects are large

s-wave interaction \rightarrow s state p-wave interaction \rightarrow higher partial wave states

Fig. 8 The calculated energy levels with the several combinations of the potential terms are shown in the solid lines for $1 s$ state and dotted lines for the $2 p$ state in ${ }^{123} \mathrm{Sn}$. The level widths are indicated by the hatched area. The potential terms included in the calculation for the energy levels are (a) the electromagnetic interaction V_{em}, (b) V_{em} and the isoscalar s-wave interaction (b_{0} term), (c) V_{em}, b_{0} term, and the isovector s-wave interaction (b_{1} term), (d) V_{em} and the whole part of the local potential (b 's and B_{0} terms), and (e) the full potential (V_{em} and V_{opt}).

How to observe meson in nucleus (modern)

- Missing mass: $1+2 \rightarrow 3+X(d+A \rightarrow 3 H e+\pi A t o m)$

$$
M_{\mathrm{miss}}^{2}=\left(E_{1}+E_{2}-E_{3}\right)^{2}-\left(\overrightarrow{p_{1}}+\overrightarrow{p_{2}}-\overrightarrow{p_{3}}\right)^{2}
$$

(X is NOT observed)

- Invariant mass: $\mathrm{X} \rightarrow 1+2\left(\phi \rightarrow e^{-}+e^{+}\right)$

$$
p_{\phi}^{\mu}=p_{-}^{\mu}+p_{+}^{\mu} \quad m_{\mathrm{inv}}=\sqrt{\left(p_{-}+p_{+}\right)^{2}}
$$

(Outside decay background, FSI)

Effective number approach

- Factorization of elementary process cross section
- Use of known experimental data (e.g., nuclear response)
- Good approach to the mesonic atom systems with relatively narrow widths
$>\left(\mathrm{d},{ }^{3} \mathrm{He}\right)$ reaction H. Toki et al., NPA530(91)679; S. Hirenzaki et al., PRC44(91)2472
$\mathrm{d}+$ Nucleus $\rightarrow{ }^{3} \mathrm{He}+\pi$ atom 1 neutron pick up reaction
Heavy target case:
Formation cross section of pionic atoms

$$
d \sigma=\sum_{f} \frac{V^{2}}{v_{\mathrm{rel}}} \frac{1}{V T}\left|S_{f i}\right|^{2} \frac{V}{(2 \pi)^{3}} d \mathbf{p}_{\mathrm{He}}
$$

S matrix:
$S_{f i}=\int d t d \mathbf{r} \sqrt{\frac{M_{\mathrm{He}}}{E_{\mathrm{He}}}} \frac{1}{\sqrt{V}} e^{i E_{\mathrm{He}} t} \chi_{\mathrm{He}}^{*}(\mathbf{r}) \sqrt{\frac{1}{2 E_{\pi}}} e^{i E_{\pi} t} \phi_{\pi}^{*}(\mathbf{r}) i \frac{T\left(p_{d}, p_{n}, p_{\mathrm{He}}, p_{\pi}\right)}{\uparrow} \sqrt{\frac{M_{d}}{E_{d}}} \frac{1}{\sqrt{V}} e^{-i E_{d} t} \chi_{d}(\mathbf{r}) \sqrt{\frac{M_{n}}{E_{n}}} e^{-i E_{n} t} \psi_{n}(\mathbf{r})$

Effective number approach

$$
\left(\frac{d^{2} \sigma}{d E_{\mathrm{He}} d \Omega_{\mathrm{He}}}\right)_{A}^{\mathrm{lab}}=\left(\frac{d \sigma}{d \Omega_{\mathrm{He}}}\right)_{\mathrm{ele}}^{\mathrm{lab}} \sum_{p h} K\left(\frac{\Gamma}{2 \pi} \frac{1}{\Delta E^{2}+\Gamma^{2} / 4} N_{\mathrm{eff}}+\frac{2 p_{\pi} E_{\pi}}{\pi} N_{\mathrm{eff}}\right)
$$

$$
\Delta \mathrm{E}=\mathrm{Q}+\mathrm{m}_{\pi}-\mathrm{B}_{\pi}+\mathrm{Sn}-6.787 \mathrm{MeV} \quad \text { Bound region Quasi-elastic region }
$$

- Elementary cross section $\left(\frac{d \sigma}{d \Omega_{\mathrm{He}}}\right)_{\text {ele }}^{\text {lab }}$: Experimental data ($\mathrm{d}+\mathrm{n} \rightarrow 3^{3} \mathrm{He}+\pi^{-}$)
- Kinematical correction factor: Difference of kinematics between $\mathrm{d}+\mathrm{n} \boldsymbol{-}^{3} \mathrm{He}+\pi^{-}$and

$$
K=\left[\frac{\left|\vec{p}_{\mathrm{He}}^{A}\right|}{\left|\vec{p}_{\mathrm{He}}\right|} \frac{E_{n} E_{\pi}}{E_{n}^{A} E_{\pi}^{A}}\left(1+\frac{E_{\mathrm{He}}}{E_{\pi}} \frac{\left|\vec{p}_{\mathrm{He}}\right|-\left|\vec{p}_{d}\right| \cos \theta_{d \mathrm{He}}}{\left|\vec{p}_{\mathrm{He}}\right|}\right)\right]^{\mathrm{lab}}
$$

$$
\mathrm{A}\left(\mathrm{~d},{ }^{3} \mathrm{He}\right)(\mathrm{A}-1) \otimes \pi^{-}
$$

- Effective Number:

$$
N_{\mathrm{eff}}=\sum_{J M m}\left|\int d \vec{r}^{i \vec{q} \cdot \vec{r}} D(\vec{r}) \xi_{\frac{1}{2} m}^{\dagger}\left[\phi_{\ell_{\pi}}^{*}(\vec{r}) \otimes \psi_{j_{n}}(\vec{r})\right]_{J M}\right|^{2}
$$

$D(r)$: Distortion factor
q : Momentum transfer
$\psi_{j_{n}}$: Neutron wave function

* Information on the nuclear response in one neutron pick-up reaction

$$
N_{\text {eff }} \rightarrow N_{\text {eff }}\left(\ell_{\pi} \otimes j_{n}^{-1}\right) \times F_{O}\left(j_{n}\right) \times \begin{cases}F_{R}\left(\left(j_{n}^{-1}\right)_{1}\right), & \mathrm{F}_{\mathrm{O}}: \text { Neutron occupation probabilities in the target } \\ F_{R}\left(\left(j_{n}^{-1}\right)_{2}\right), & \\ \ldots & \mathrm{F}_{\mathrm{R}}: \text { Relative strength factor of the } \mathrm{N} \text {-th excited states } \\ F_{R}\left(\left(j_{n}^{-1}\right)_{N}\right), & \text { in the daughter nucleus }\end{cases}
$$

Pick-up Reaction : $\mathrm{d}+$ Nucleus $\rightarrow{ }^{3} \mathrm{He}+\pi$ atom
$\left(j_{\mathrm{n}}^{-1} \cdot l_{\pi}\right) J$

Expected ($\mathrm{d},{ }^{3} \mathrm{He}$) spectra

* Expected Spectrum

Quasi- astic Meson Production

Observed ($\mathrm{d},{ }^{3} \mathrm{He}$) spectra

($\mathrm{d}^{3} \mathrm{He}$) reaction
H. Toki, et al., NPA530(91)679; S. Hirenzaki et al., PRC44(91)2472

Initial state:

Nucleus

${ }^{208} \mathrm{~Pb}$ target

S. Hirenzaki et al., PRC44(91)2472

Final state:

K. Itahashi et al., PRC62(00)025202

Role of the momentum transfer q in the reaction

- Large $\mathrm{q} \Rightarrow$ Cross section becomes small (generally)
- Matching condition of the angular momentum transfer L and the momentum transfer q

$$
L=\left[\ell_{\pi} \otimes \ell_{n}^{-1}\right] \simeq q R=\mathrm{q} \times(\text { Nuclear Radius })
$$

=> the matching condition plays an important role in determining the largely populated subcomponents
$>\left(\mathrm{d}_{1}{ }^{3} \mathrm{He}\right)$ reaction $\mathbf{q}=\left|\mathbf{p}_{\mathrm{d}}-\mathbf{p}_{\mathrm{He}}\right|$

- Forward angle: It can be recoilless (q~0)
\Rightarrow Enhanced formation with L~0 state (s-state contributions relatively large)
- Finite angles: Larger q
\Rightarrow Enhanced formation with large L state

$$
\mathrm{Sn}=0 \mathrm{MeV} \text {, } \mathrm{B} \cdot \mathrm{E} .=0 \mathrm{MeV}
$$

We can observe selectively the different pionic states by adjusting q

${ }^{122} \mathrm{Sn}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)$ spectrum $\quad\left[(n \ell)_{\pi} \otimes(n \ell)_{n}^{-1}\right]$

Quasi-elastic region Bound region

1 neutron pickup reaction without π production

Exp. Data: ${ }^{122} \mathrm{Sn}(\mathrm{d}, \mathrm{t})^{121} \mathrm{Sn}$ E. J. Schneid et al., Phys. Rev. 156 (1967) 1316

Neutron hole orbit j_{h}	Ex $[\mathrm{MeV}]$
$3 \mathrm{~s} 1 / 2$	0.06
$2 \mathrm{~d} 3 / 2$	0.00
$2 \mathrm{~d} 5 / 2$	1.11
	1.37
$1 \mathrm{~g} 7 / 2$	0.90
$1 \mathrm{~h} 11 / 2$	0.05

New Exp. data:
S.V. Szwec et al.,

PRC104 (2021) 054308

Energy resolution $\Delta \mathrm{E}=300 \mathrm{keV}$

- We can see the large peak structure of pionic 1s state
- Combination of the pionic 1 s state and neutron-hole $3 \mathrm{~s} 1 / 2$ state

${ }^{122} \mathrm{Sn}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)$ spectra at Finite angles

Momentum transfer

Energy resolution $\Delta \mathrm{E}=300 \mathrm{keV}$

Neutron wave function: H. Koura et al., NPA671(2000)96

Spectra have a strong angular dependence.

${ }^{122} \mathrm{Sn}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)$ spectra at Finite angles

Dominant Subcomponent $\left[(n \ell)_{\pi} \otimes(n \ell)_{n}^{-1}\right]$

Odeg

Energy resolution $\Delta \mathrm{E}=300 \mathrm{keV}$

2deg

We can obtain information on the deeply bound pionic $\mathbf{2 p}$ state in addition to $1 \mathbf{s}$ and 2 s states.

Extension to the study of the odd-neutron nuclear target

Even-Even Nucleus: $\mathrm{Jp}^{\mathrm{p}}=\mathbf{0}^{+}$

Pionic atoms: pion particle - neutron hole $\left[\pi \otimes n^{-1}\right]$

"Residual interaction effect"

- Energy shift
- Level splitting between different J state

Shift of Peak position in the spectra

Additional difficulty to determine B.E. and pion property in the nucleus
S. Hirenzaki et al. PRC60(99)058202; N. Nose-Togawa et al. PRC71(05)061601(R)
$>$ Interests of Odd target
Sn:
115
Sn
$1 / 2^{+}$
116
0^{+}
${ }^{117} \mathrm{Sn}$
$1 / \mathbf{2}^{+}$
${ }^{118} \mathrm{Sn}$
0^{+}

119
$1 / 2^{+}$

${ }^{120} S n$
${ }^{121}$ Sn
${ }^{122} \mathrm{Sn}$
${ }^{123} \mathrm{Sn}$
${ }^{124} \mathrm{Sn}$
0^{+}

Pionic state free from residual interaction effect [$\pi^{-} \otimes 0^{+}$]
\Rightarrow Expect to extract more accurate information than even targets
 from data.

Even target: ${ }^{122}$ Sn ($\mathbf{0}^{+}$)

Initial:

Final:

Odd target: ${ }^{117, ~ 119} \mathbf{S n}\left(1 / 2^{+}\right)$

Initial:

Final:
(1) neutron pick-up (2) neutron pick-up j_{h} orbit from $s_{1 / 2}$ orbit ${ }^{\text {u }}$ from other than $s_{1 / 2}$

> Realistic neutron configurations for the target and the daughter nucleus: Exp. Data

Even target: ${ }^{122}$ Sn (0^{+})

Excited level of ${ }^{121} \mathrm{Sn}$

Exp. Data: ${ }^{122} \mathrm{Sn}(\mathrm{d}, \mathrm{t})^{121} \mathrm{~S} n$
E. J. Schneid et al., Phys. Rev. 156 (1967) 1316

Neutron hole orbit J_{h}	$\mathrm{Ex}[\mathrm{MeV}]$
$3 \mathrm{~s} 1 / 2$	0.06
$2 \mathrm{~d} 3 / 2$	0.00
$2 \mathrm{~d} 5 / 2$	1.11
	1.37
$1 \mathrm{~g} 7 / 2$	0.90
$1 \mathrm{~h} 11 / 2$	0.05

New Exp. data: S.V. Szwec et al., PRC104 (2021) 054308
\checkmark Many excited levels
\checkmark Large excitation energies (Ex)
Pionic atom formation spectra: Expected to be complicated and broad spectra

Odd target: ${ }^{117}$ Sn (1/2+)

Excited level of ${ }^{116} \mathbf{S n}$

Exp. Data: ${ }^{117} \mathrm{Sn}(\mathrm{d}, \mathrm{t}){ }^{116} \mathrm{Sn}$,
J. M. Schippers et al., NPA510(1990)70

Jp	Neutron hole orbit j_{h}	Ex[MeV]
0+	$3 \mathrm{~s} 1 / 2$	$\left.\begin{array}{l} 0.00 \\ 1.76 \\ 2.03 \\ 2.55 \end{array}\right\}$
1+	2d3/2	$\begin{array}{ll} \hline 2.59 \\ 2.96 \\ \hline \end{array}$
2+	2d3/2 and 2d5/2	$\begin{aligned} & \hline 1.29 \\ & 2.23 \\ & 3.23 \\ & 3.37 \\ & 3.47 \\ & 3.59 \\ & 3.77 \\ & 3.95 \\ & \hline \end{aligned}$
3+	$2 \mathrm{~d} 5 / 2$ and $1 \mathrm{~g} 7 / 2$ $1 \mathrm{~g} 7 / 2$	$\begin{aligned} & \hline 3.00 \\ & 3.42 \\ & 3.71 \\ & 3.18 \end{aligned}$

Odd target

$>{ }^{117} \mathrm{Sn}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)$ spectra at 0 degrees
Quasi-Free region Bound region

Neutron wave function:
H. Koura et al., NPA671(00)96

Energy resolution $\Delta \mathrm{E}=300 \mathrm{keV}$

Dominant Subcomponent:

$$
\left[(n \ell)_{\pi} \otimes J^{P}\right]
$$

- We can see clear peak structure of $\left[(1 \mathrm{~s})_{\pi} \otimes{ }^{116} \mathrm{Sn}\left(0^{+}\right)\right]$
- No residual interaction effect

Interest and Motivation

(1) New exotic Hadron many body systems
(2) Baryon resonances at finite density

$$
N^{*}(1535) \quad \Lambda(1405)
$$

(3) Aspects of the Strong Int.Symmetry

$>$ Pion-Nucleus optical potential

$$
2 \mu V_{\mathrm{opt}}^{s}=-4 \pi\left[\varepsilon_{1}\left\{b_{0} \rho(r)+b_{1} \rho \rho(r)\right\}+\varepsilon_{2} B_{0} \rho^{2}(r)\right]
$$

\checkmark b1 determination, Comparison with value in vacuum
\checkmark Relation between $b_{1} \Leftrightarrow f \pi \Leftrightarrow<q q>$

- Tomozawa - Weinberg (TW) relation

$$
T_{\pi A}^{(-)}=-4 \pi \varepsilon_{1} b_{1}=\frac{\omega}{2 f_{\pi}^{* 2}}
$$

- Gell-Mann-Oakes - Renner (GOR) relation

$$
m_{\pi}^{2} f_{\pi}^{* 2}=-2 m_{q}\langle\bar{q} q\rangle_{\rho}
$$

$$
\longrightarrow \frac{\langle\bar{q} q\rangle_{\rho}}{\langle\bar{q} q\rangle_{0}} \simeq \frac{f_{\pi}^{* 2}}{f_{\pi}^{2}} \simeq \frac{b_{x}^{\text {free }}}{b_{1}^{*}(\rho)}=0.78 @ \rho \simeq 0.6 \rho_{0}
$$

$$
\sim 0.67 @ \rho=\rho_{0}
$$

Some memos for pi atom

Basic Story (Prediction, Observation, Feedback)

- Observe meson in nucleus (B.E., Width, , , ,)
- Deduce in-medium meson properties (b1, , ,)
- Relate them to fundamental parameters
(Condensate, , ,)
Some points
* States with well-defined quantum numbers
(something like "selection rule")
* Exclusive information (s-wave isovector int., , ,)
* Reliable connection between Theoretical formula and Exp. Result
* Model independent theoretical treatment
(... for feedback/fitting)

In reality, we need some phenomenological pieces.
> Pion-Nucleus optical potential

$$
2 \mu V_{\mathrm{opt}}^{s}=-4 \pi\left[\varepsilon_{1}\left\{b_{0} \rho(r)+b_{1} \rho \rho(r)\right\}+\varepsilon_{2} B_{0} \rho^{2}(r)\right]
$$

\checkmark b1 determination, Comparison with value in vacuum
\checkmark Relation between $b_{1} \Leftrightarrow f \pi \Leftrightarrow<q q>$

- Tomozawa - Weinberg (TW) relation

$$
T_{\pi A}^{(-)}=-4 \pi \varepsilon_{1} b_{1}=\frac{\omega}{2 f_{\pi}^{* 2}}
$$

- Gell-Mann - Oakes - Renner (GOR) relation

$$
m_{\pi}^{2} f_{\pi}^{* 2}=-2 m_{q}\langle\bar{q} q\rangle_{\rho}
$$

$$
\begin{aligned}
\longrightarrow \frac{\langle\bar{q} q\rangle_{\rho}}{\langle\bar{q} q\rangle_{0}} \simeq \frac{f_{\pi}^{* 2}}{f_{\pi}^{2}} \simeq \frac{b_{1}^{\text {free }}}{\bar{b}_{1}^{*}(\rho)} & =0.78 @ \rho \simeq 0.6 \rho_{0} \\
& \sim 0.67 @ \rho=\rho_{0}
\end{aligned}
$$

- Data corresponds to info.
at Effective Density

Parameter correlation and Effective density

> R. Seki, K. Masutani,
> Phys. Rev. C27(1983)2799

$$
\begin{aligned}
& b_{0}+\alpha_{s} B_{0}=\beta_{s}=(0.003+0.01 i) \mathrm{m}_{\pi}^{-1} \\
& \alpha_{s} \simeq 0.23 \mathrm{~m}_{\pi}^{3}
\end{aligned}
$$

All potentials which satisfies the SM relation between potential parameters

T. Yamazaki,
S. Hirenzaki PLB557(03)20

Peak positions of the overlapping density are almost same for all states.

- The effective nuclear density ρ e is almost same, $\rho \mathrm{e} \sim 1 / 2 \rho_{0}$ for all states.
$=>$ consistent with the expectation from the contour plot

$$
S(r)=\frac{\rho(r)}{\mathrm{N}} \frac{\left|R_{n l}(r)\right|^{2} r^{2}}{\pi}: \text { Overlapping density }
$$

Model independent analysis (here low density expressions)

In-medium pion and partial restoration of chiral symmetry
D. Jido ${ }^{\text {a,* }}$, T. Hatsuda ${ }^{\text {b }}$, T. Kunihiro ${ }^{\text {a,c }}$

$$
\frac{\langle\bar{q} q\rangle^{*}}{\langle\bar{q} q\rangle} \simeq\left(\frac{b_{1}}{b_{1}^{*}}\right)^{1 / 2}\left(1-\gamma \frac{\rho}{\rho_{0}}\right) \quad, \text { where } \quad z_{\pi}^{* 1 / 2} \equiv\left(\frac{G_{\pi}^{*}}{G_{\pi}}\right)^{1 / 2}=1-\gamma \frac{\rho}{\rho_{0}}
$$

* Model independent (low density expression)
$* Z_{\pi}$: wave function renormalization
* Equivalent to GOR
* $\mathrm{m}_{\pi}{ }^{*}$ not necessary (but scattering length)

In-medium GOR

$$
\left(F_{\pi}^{t}\right)^{2} m_{\pi}^{* 2}=-2 m_{q}\langle\bar{q} q\rangle^{*}, \quad \rightarrow \quad\left(\frac{F_{\pi}^{t}}{F_{\pi}}\right)^{2}\left(\frac{m_{\pi}^{*}}{m_{\pi}}\right)^{2}=\frac{\langle\bar{q} q\rangle^{*}}{\langle\bar{q} q\rangle}
$$

\rightarrow Adopt these theoretical relations at the effective density

Another "prescription"

$$
\sigma_{\pi N}=\frac{\bar{m}_{q}}{2 m_{N}} \sum_{u, d}\langle N| \bar{q} q|N\rangle
$$

Pion-nucleon sigma term $\sigma_{\pi \mathrm{N}}$ "distribution" $\bar{m}_{q}=\frac{m_{u}+m_{d}}{2}$

Nucleon charges with dynamical overlap fermions
PHYSICAL REVIEW D 98, 054516 (2018)

The nucleon sigma term from lattice QCD
R. Gupta, S. Park, M. Hoferichter, E. Mereghetti,]
B. Yoon and T. Bhattacharya, [arXiv:2105.12095 [hep-latt].

The value of $\sigma_{\pi N}$ has not been determined accurately enough: $\sigma_{\pi N}=25 \sim 60 \mathrm{MeV}$ $=>$ It seems to be very interesting to determine the $\sigma_{\pi N}$ value by the deeply bound pionic atoms.

$\sigma_{\pi \mathrm{N}}$ term in the optical potential

> Pion-Nucleus optical potential

$$
\begin{aligned}
2 \mu V_{\mathrm{Opt}}(r) & =-4 \pi\left[b(r)+\varepsilon_{2} B_{0} \rho^{2}(r)\right]+4 \pi \nabla \cdot\left[c(r)+\varepsilon_{2}^{-1} C_{0} \rho^{2}(r)\right] L(r) \nabla \\
b(r) & \left.=\varepsilon_{1}\left\{b_{0} \rho(r)+b_{1}\right)\left[\rho_{n}(r)-\rho_{p}(r)\right]\right\} \\
c(r) & =\varepsilon_{1}^{-1}\left\{c_{0} \rho(r)+c_{1}\left[\rho_{n}(r)-\rho_{p}(r)\right]\right\} \\
L(r) & =\left\{1+\frac{4}{3} \pi \lambda\left[c(r)+\varepsilon_{2}^{-1} C_{0} \rho^{2}(r)\right]\right\}^{-1}
\end{aligned}
$$

$$
b_{1}(\rho)=b_{1}^{\mathrm{free}}\left(1-\frac{\sigma_{\pi N}}{m_{\pi}^{2} f_{\pi}^{2}} \rho\right)^{-1}
$$

$$
b_{0}(\rho)=b_{0}^{\mathrm{freee}}-\varepsilon_{1} \frac{3}{2 \pi}\left(b_{0}^{\mathrm{free}}+2 b_{1}^{2}(\rho)\right)\left(\frac{3 \pi^{2}}{2} \rho\right)^{1 / 3}
$$

- The $\sigma_{\pi N}$ value determined by the existing pionic atom data was reported:
χ^{2} fitting for (all) atomic data (BE, Width)
$\sigma_{\pi N}^{\mathrm{FG}^{-}}=57 \pm 7 \mathrm{MeV}, \quad \begin{aligned} & \text { E. Friedman and A. Gal, Phys. Lett. B 792, } 340(2019) . \\ & \text { E. Friedman and A. Gal, Acta Phys. Polon. B 51, 45-54 (2020). }\end{aligned}$
We especially focus on the observables of the high-precision deeply bound pionic states

$\sigma_{\pi \mathrm{N}}$ term dependence of the pionic atom observables

N. Ikeno, T. Nishi, K. Itahashi, N. Nose-Togawa, A. Tani, S. Hirenzaki, arXiv:2204.09211 [nucl-th]

We can see clearly the strong sensitivities of the observables to $\sigma_{\pi N}$ $=>$ It would be interesting to determine $\sigma_{\pi N}$ values from experimental data

Future Outlook

- Beyond the linear density (model independent)
- Another prescription ?, GOR with b_{0} for mass ?
- Pionic atom in unstable nuclei by inverse kinematics
chiral symmetry restoration in asymmetric nuclear matter,
structure of unstable nuclei by pion
Exp. of the $\mathrm{d}\left({ }^{136} \mathrm{Xe},{ }^{3} \mathrm{He}\right)$ at RIKEN in a few years ? K. Itahishi et al.
Old works: Y. Umemoto et al. NPA679(2001)549, S. Hirenzaki et al. PLB194 (1987)20,
- Improvement of the theoretical calculations: To reproduce quantitatively the data by T. Nishi, K. Itahashi et al., PRL120, 152505 (2018)
- Extension to other meson systems

- Combined analysis with transport models such as JAM (for heavier meson sys.) (Y. Higashi, Master's thesis (Nara Women's 2015))

