Pionic atom unveils hidden structure of QCD vacuum

—Deduction of chiral condensate at nuclear density—

RIKEN Nishina Center Kenta Itahashi

Pionic atom unveils hidden structure of QCD vacuum

Takahiro Nishi¹, Kenta Itahashi¹,* DeukSoon Ahn^{1,2}, Georg P.A. Berg³, Masanori Dozono¹,
Daijiro Etoh⁴, Hiroyuki Fujioka⁵, Naoki Fukuda¹, Nobuhisa Fukunishi¹, Hans Geissel⁶, Emma Haettner⁶,
Tadashi Hashimoto¹, Ryugo S. Hayano⁷, Satoru Hirenzaki⁸, Hiroshi Horii⁷, Natsumi Ikeno⁹, Naoto Inabe¹,
Masahiko Iwasaki¹, Daisuke Kameda¹, Keichi Kisamori¹⁰, Yu Kiyokawa¹⁰, Toshiyuki Kubo¹,
Kensuke Kusaka¹, Masafumi Matsushita¹⁰, Shin'ichiro Michimasa¹⁰, Go Mishima⁷, Hiroyuki Miya¹,
Daichi Murai¹, Hideko Nagahiro⁸, Megumi Niikura⁷, Naoko Nose-Togawa¹¹, Shinsuke Ota¹⁰,
Naruhiko Sakamoto¹, Kimiko Sekiguchi⁴, Yuta Shiokawa⁴, Hiroshi Suzuki¹, Ken Suzuki¹², Motonobu Takaki¹⁰,
Hiroyuki Takeda¹, Yoshiki K. Tanaka¹, Tomohiro Uesaka¹, Yasumori Wada⁴, Atomu Watanabe⁴,
Yuni N. Watanabe⁷, Helmut Weick⁶, Hiroki Yamakami⁵, Yoshiyuki Yanagisawa¹, and Koichi Yoshida¹

https://doi.org/10.48550/arXiv.2204.05568

Material properties of vacuum

Properties of QCD vacuum depend on temperature and matter-density

宇宙の誕生

代子核の形成

民子の形成

この形成

1374

2

QCD phase and chemical freezeout points

Rapp, Wambach, Hees, SpringerMaterials 23, 1 (2010)

Chiral transition & Quark confinement

Correlation between Confinement and CSB is suggested by Simultaneous Phase Transition of Deconfinement and Chiral Restoration.

Lattice QCD results at finite temperature F. Karsch, Lect. Notes Phys. (2002)

Fig. 2. Deconfinement and chiral symmetry restoration in 2-flavour QCD: Shown is $\langle L \rangle$ (left), which is the order parameter for deconfinement in the pure gauge limit $(m_q \to \infty)$, and $\langle \bar{\psi}\psi \rangle$ (right), which is the order parameter for chiral symmetry breaking in the chiral limit $(m_q \to 0)$. Also shown are the corresponding susceptibilities as a function of the coupling $\beta = 6/g^2$.

4

Chiral transition & Quark confinement

Correlation between Confinement and CSB is suggested by Simultaneous Phase Transition of Deconfinement and Chiral Restoration.

Lattice QCD results at finite temperature F. Karsch, Lect. Notes Phys. (2002)

Confinement と Chiral Symmetry Breaking の相関

有限温度や有限体積効果でのQCD相転移の様相などから、 両者には密接な対応関係があるのは明らか ~Deconfinement と Chiral Symmetry Restoration の一致

ただし、両者の関係はあまり良く分かっていないのが現状

Polyakov Loop < P> Color Confinement

Chiral Condensate < **qq** > Chiral Symmetry Breaking

Fig. 2. Deconfinement and chiral symmetry restoration in 2-flavour QCD: Shown is $\langle L \rangle$ (left), which is the order parameter for deconfinement in the pure gauge limit $(m_q \to \infty)$, and $\langle \bar{\psi}\psi \rangle$ (right), which is the order parameter for chiral symmetry breaking in the chiral limit $(m_q \to 0)$. Also shown are the corresponding susceptibilities as a function of the coupling $\beta = 6/g^2$.

Lattice QCD calculated T dependence of chiral condensate

Temperature dependence of the chiral condensate from lattice QCD with 2 + 1 quark flavours and almost physical quark masses

Lattice QCD calculated T dependence of chiral condensate

Chiral condensate, order parameter of chiral symmetry

Remark: sign problem makes it difficult for lattice to approach non-zero ρ region

Analysis of material properties of QCD vacuum

Meson masses and QCD medium effect

Vector meson mass modification

¢(1020)

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$

Mass $m = 1019.455 \pm 0.020$ MeV (S = 1.1) Full width $\Gamma = 4.26 \pm 0.04$ MeV (S = 1.4)

¢(1020) DECAY MODES	Solution (Γ_j/Γ) Conf	cale factor/ idence level	p (MeV/c)
$K^{+}K^{-}$	$(48.9 \pm 0.5)\%$	S=1.1	127
NLNS	(34.2 ±0.4) %	5-1.1	110
$\ell^+ \ell^-$	_		510
e+e-	$(2.954 \pm 0.030) \times 10^{-4}$	S=1.1	510
$\mu^+\mu^-$	$(2.87 \pm 0.19) \times 10^{-4}$		499

ρ(770) [h]

 $I^{G}(J^{PC}) = 1^{+}(1^{--})$

Mass $m = 775.49 \pm 0.34$ MeV Full width $\Gamma = 149.1 \pm 0.8$ MeV $\Gamma_{ee} = 7.04 \pm 0.06$ keV

ω(782)

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$

Mass $m = 782.65 \pm 0.12$ MeV (S = 1.9) Full width $\Gamma = 8.49 \pm 0.08$ MeV $\Gamma_{ee} = 0.60 \pm 0.02$ keV

T.Hatsuda, S.H.Lee, Phys. Rev. **C46** (1992) R34

Jido et al., NPA 914 (2013) 354

Pionic atoms

Ikeno et al., PTP126 (2011) 483 13

Pion-nucleus interaction

Overlap between pion w.f. and nucleus → π works as a probe at ρ_e~0.6ρ_s π-nucleus interaction is changed for wavefunction renormalization of medium effect

Ericson-Ericson potential $U_{opt}(r) = U_{s}(r) + U_{p}(r),$ $U_{s}(r) = b_{0} \rho + b_{1} (\rho_{n} - \rho_{p}) + B_{0} \rho^{2}$ $U_{p}(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_{2}^{-1} C_{0} \rho^{2}(r)] L(r) \vec{\nabla}$

Pion-nucleus interaction and chiral condensate

Overlap between pion w.f. and nucleus → π works as a probe at ρ_e~0.6ρ_s

π-nucleus interaction is changed for wavefunction renormalization of medium effect

Ericson-Ericson potential

 $U_{\text{opt}}(r) = U_s(r) + U_p(r),$ $U_s(r) = b_0 \rho + b_1 (\rho_n - \rho_p) + B_0 \rho^2$ $U_p(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_2^{-1} C_0 \rho^2(r)] L(r) \vec{\nabla}$

In-medium Glashow-Weinberg relation

γ=0.184±0.003

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

Pion-nucleus interaction and chiral condensate

 $\begin{array}{l} \mbox{Gell-Mann-Oakes-Renner relation} \\ f_{\pi}^2 m_{\pi}^2 &= -2m_q \left< \bar{q}q \right> \\ \mbox{Tomozawa-Weinberg relation} \\ b_1 &= -\frac{m_{\pi}}{8\pi f_{\pi}^2} \\ \hline \left< \frac{\left< \bar{q}q \right>_{\rho}}{\left< \bar{q}q \right>_{0}} \approx \frac{b_1^{\rm free}}{b_1(\rho)} \end{array}$

M. Gell-Mann *et al.*, PR175(1968)2195. Y.Tomozawa, NuovoCimA46(1966)707. S.Weinberg, PRL17(1966)616.

In-medium Glashow-Weinberg relation

γ=0.184±0.003

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

High precision pionic hydrogen/deuterium measurement at PSI

German School and Workshop in Basic Sc

July 10, 2014

High precision pionic hydrogen/deuterium measurement at PSI

Pion-nucleus interaction and chiral condensate

Level shifts in pionic X-ray measurements

piA and π-nucleus interaction

Spectroscopy of pionic atoms in (*d*,³He) reactions

Missing mass spectroscopy to measure excitation spectrum of pionic atoms

(d,³He) Reaction Spectroscopy in RIBF

Reaction spectroscopy of pionic atom

Search for pionic atoms GSI-S160	1996	²⁰⁸ Pb(d, ³ He)
1s measurement GSI-S160	1998	²⁰⁶ Pb(d, ³ He)
Systematic run with Sn GSI-S236	2002	¹¹⁶⁻¹²⁴ Sn(d, ³ He)
Pilot run at RIBF RIBF-27	2010	¹²² Sn(d, ³ He)
Production RIBF-54R1	2014	^{117,122} Sn(d, ³ He)
Systematic Measurement RIBF-135	2021	¹¹²⁻¹²⁴ Sn(d, ³ He)
Inverse (pilot) RIBF-214		D(¹³⁶ Xe, ³ He)
Inverse		D(X, ³ He)

(p,2He), (p,2p) in RCNP

RI Beam Factory

26

RI Beam Factory

Resolution improvement technique

Resolution improvement technique

Dispersion matching using primary beam

Resolution improvement technique

Resolution estimation

FWHM [keV]	2014	2021
Target thickness	110	30
Multiple scattering	120	45
Beam & optics	200	85
Total	~280	~100?

cf. 400 keV in GSI and in 2010

T. Nishi KI et al., PRL120, 152505 (2018)

Is and 2p pionic atom cross sections in (d,³He)

T. Nishi KI et al., PRL120, 152505 (2018)

Theory calculates 5x larger cross section for 1s

T. Nishi KI et al., PRL120, 152505 (2018)

T. Nishi KI et al., PRL120, 152505 (2018)

Measured nuclear density distribution of Sn isotopes Sn(p,p') reaction at RCNP, Osaka

Residual interaction

Formulation: Even vs. Odd target

Effective Number

Ikeno@Hadron 2013

Theoretical predictions

- Pionic 1s state formation with neutron s-hole state is large in both spectra.
- Bound pionic state formation spectra in ¹¹⁷Sn(d,³He) are spread over wider energy range.
- Absolute value of cross section in ¹¹⁷Sn(d,³He) is smaller.

Ikeno@Hadron 2013

Residual interaction

Formulation: Even vs. Odd target

Effective Number

Nose-Togawa et al., PRC71, 061601(R) (2005)

TABLE V. Calculated complex energy shifts because of the residual interaction in ¹³¹Sn. The results are shown in units of kilo-electron-volts for $[(1s)_{\pi} \otimes j_n^{-1}]_J$ and $[(2p)_{\pi} \otimes j_n^{-1}]_J$, including the *s*-wave and the *p*-wave parts of the pion neutron-hole residual interaction.

	1 <i>s</i>	2 <i>p</i>	
$s_{1/2}^{-1}$	-10.5 - 1.3i	J = 1/2 J = 3/2	-3.2 - 0.6i -3.3 - 0.6i
$d_{3/2}^{-1}$	-10.4 - 2.1i	J = 1/2 J = 3/2 J = 5/2	-7.1 - 2.0i 0.2 + 0.0i -3.8 - 1.1i
$g_{7/2}^{-1}$	-6.5 - 1.6i	J = 5/2 J = 7/2 J = 9/2	-3.0 - 1.2i 0.9 + 0.4i -2.1 - 0.8i
$h_{11/2}^{-1}$	-9.6 - 2.6 <i>i</i>	J = 9/2 J = 11/2 J = 13/2	-4.6 - 1.8i 1.1 + 0.4i -3.7 - 1.4i
$d_{5/2}^{-1}$	-9.9 - 1.9 <i>i</i>	J = 3/2 J = 5/2 J = 7/2	-5.8 - 1.5i 0.6 + 0.2i -3.9 - 1.1i
	Effect o	f~10	keV

Ikeno@Hadron 2013

¹²²Sn(d,³He) spectra calculated with Neff and Green's function methods

N. Ikeno et al., PTEP 2015, 033D01 (2015)

Summary

- The binding energies and widths of the 1*s* and 2*p* states in Sn121 were determined with very high precision. Difference between the 1*s* and 2*p* values reduces the systematic errors drastically.
- Recent theoretical progress was adopted for the < qbar q> evaluation, which directly
 relates the chiral condensate and the pion-nucleus interaction.
- We calculated various corrections for the first time and applied them. The application made a jump of the deduced chiral condensate. After the corrections, the chiral condensate ratio was deduced with much higher reliability.
- We conducted measurement of ρ dependence of chiral condensate in systematic study.
 We plan measurement with "inverse kinematic" reactions for pionic xenon, which leads to future experiments for pionic unstable nuclei.