Hadron Cafe, TITEC, Sep. 21, 2023

Quark substructure of hadrons and equations of state in dense QCD QCD Toru Kojo condensed Astro (Tohoku Univ.) matter

Refs) Baym-Hatsuda-TK-Powell-Song-Takatsuka, "QHC", review on neutron stars (2018)
 TK, "Stiffening of matter in quark-hadron continuity" PRD (2021)
 Fujimoto-TK-McLerran, "IdylliQ matter model" arXiv: 2306.04304 [nucl-th]

State of matter: overview

few meson exchange

nucleons only

٠

- many-quark exchange
- structural change,...
- hyperons, Δ , ...

(pQCD) [Freedman-McLerran, Kurkela+, Fujimoto+...]

gravitational compression & matter content

Soft to stiff is challenging:

I, Introduction

2, Sound velocity in nuclear & quark matter: a guide

3, A model for quark-hadron-duality (IdylliQ matter)

4, Stiff quark matter: semi-short range correlations

5, Summary

pressure from $\epsilon(n_B)$

$$\mathcal{P} = n_B^2 \, \frac{\partial}{\partial n_B} \left(\frac{\varepsilon}{n_B} \right)$$
 energy per particle

e.g.) gas of heavy particles (massive limit)

$$\varepsilon(n_B) = m_N n_B \quad \Longrightarrow \quad \varepsilon/n_B = m_N \quad \Longrightarrow \quad P = 0$$

gas of relativistic particles (massless limit)

$$arepsilon(n_B) = a n_B^{4/3} \quad \longrightarrow \quad arepsilon/n_B = a n_B^{1/3} \quad \longrightarrow \quad P = rac{arepsilon}{3}$$

c_s² in purely nucleonic models

alternative **baseline**: quark EOS

relativistic pressure ightarrow stiff EOS

can be a good starting point!?

[e.g., ChEFT, Drischler+ '21]

12/37

For systematic analyses, see e.g., Annala+ '20

13/37 Three possible scenarios [TK+ '20: JSPS article, AAPPS bull.]

I, Introduction

2, Sound velocity in nuclear & quark matter: a guide

3, A model for quark-hadron-duality (IdylliQ matter)

4, Stiff quark matter: semi-short range correlations

5, Summary

Hadron-to-quark transitions?

Confusing point:

Switching from baryonic to quark bases

 \rightarrow a source of confusions in hybrid models (e.g. normalization of energy)

15/37

Strategy:

Keep track of quark states from nuclear to quark matter

(within a single model, e.g., percolation model, Fukushima-TK-Weise '20)

Quarks in a baryon N_c (=3): number of colors

probability density:
e.g.)
$$\varphi(\boldsymbol{q};\boldsymbol{P}_{\rm B}) = \mathcal{N}_{\rm B}^{-\frac{1}{\Lambda^2}} \left(\boldsymbol{q} - \frac{\boldsymbol{P}_{\rm B}}{N_{\rm c}}\right)^2$$

$$q_3$$

$$q_2 \xrightarrow{q_1} \rightarrow P_B$$

variance:
$$\left\langle \left(p - \frac{P_B}{N_c} \right)^2 \right\rangle \sim \Lambda^2$$
 energetic .

A model of quark-hadron-duality

cf) [TK '21, TK-Suenaga '21]

"quark saturation" constraint

 \rightarrow relativistic baryons at low density, $n_B \sim 1-3n_0!$

cf) McLerran-Reddy model (2019); microscopic description, TK (2021)

Quarks do contribute to ε even before saturation; but to P only after the saturation!!

 $f_{\mathrm{Q}}(\boldsymbol{q};n_{\mathrm{B}}) = \int_{\boldsymbol{P}_{\mathrm{D}}} f_{\mathrm{B}}(\boldsymbol{P}_{\mathrm{B}};n_{\mathrm{B}})\varphi_{\mathrm{Q}}^{\mathrm{B}}(\boldsymbol{q};\boldsymbol{P}_{\mathrm{B}})$ <mark>duality:</mark> global $f_B \rightarrow f_O$ always doable, how about $f_O \rightarrow f_B$?? problem! with a specific quark distribution $\varphi_{3d}(q) = \frac{2\pi^2}{\Lambda^3} \frac{e^{-q/\Lambda}}{q/\Lambda}$ a useful model: $\hat{L} = -\boldsymbol{\nabla}^2 + \frac{1}{\Lambda^2} \qquad \hat{L}[\varphi(\boldsymbol{p} - \boldsymbol{q})] = \frac{(2\pi)^3}{\Lambda^2} \,\delta(\boldsymbol{p} - \boldsymbol{q})$ **local f_B** from local f_Q : $f_B(N_c q) = \frac{\Lambda^2}{N^3} \hat{L}[f_Q(q)]$

[Fujimoto-TK-McLerran, '23]

A solvable model

A solvable model

[Fujimoto-TK-McLerran, '23]

isospin, spin
2-flavor model:
$$\varepsilon_{\rm B}[f_{\rm B}] = 4 \int_k E_{\rm B}(k) f_{\rm B}(k)$$

IdylliQ matter (Ideal dual-lyllic Quarkyonic)

Ideal: except the confining forces that trap quarks, all interactions are neglected.

dual: explicit dual relations between baryons and quarks.

Quarkyonic: quark matter with non-perturbative (confining) gluons.

The **most compact** distributions **compatible with** the saturation

Multi-flavor extension

[Fujimoto-TK-McLerran, '23, to appear soon]

I, Introduction

2, Sound velocity in nuclear & quark matter: a guide

3, A model for quark-hadron-duality (IdylliQ matter)

4, Stiff quark matter: semi-short range correlations

5, Summary

Stiff quark matter

The appearance of c_s^2 peak is characteristic in the QHC scenarios, but is not sufficient condition for ~ 2.1-2.3M_{\odot} NS.

[see detailed studies in QHC series (3-window model); Baym+'17, '19 and TK+ '21]

Just after the crossover, quarks are not fully relativistic.

Can the chiral restoration makes quarks massless and stiffens EOS?

Unlikely: it adds "the bag constant" to the energy density! (look

(look at Dirac sea!)

 $\rightarrow \varepsilon$ increases & P decreases: **significant** softening!

Now, we consider interactions on top of IdylliQ models.

Underlying picture (guess)

Gluons remain non-perturbative at 5-10n₀

(see, e.g., lattice results for 2-color & isospin QCD)

Chiral restoration occurs mildly

implicitly included in IdylliQ type models

Continuity: interactions in quark matter should have natural counterpart in hadron physics

Short range correlations in a baryon:

my favorite: color-electric & magnetic interactions

Simple parametric analyses [TK-Powell-Song-Baym, '14]

Phase structure: Not mere academic questions, but have very practical meaning

Hints for non-pert. physics at large n_B

EOS & c_s^2 in 2-color QCD \rightarrow Itou-san's talk 2-color QCD phase diagram [lattice]

36/37

 $\rightarrow \Delta \sim 1.75 T_c \sim 175 - 210 \text{ MeV}$ at $\mu_q \sim 1 \text{ GeV}$ or $n_B \sim 40 n_0$

Summary

- For soft-to-stiff EOS: QHC is a good baseline
- Quark saturation effects: likely occur at $\sim 1-3n_0$
- Saturation triggers rapid stiffening (sound velocity peak)
- Hyperons are not independent; highly suppressed by saturation [Fujimoto-TK-McLerran, to appear]
- Bulk repulsion and Fermi surface attraction \rightarrow stiffening of EOS

Quarks are important for NS physics in multiple contexts