Complex Scaling Method : Principles and Applications

Myo, Takayuki 明 孝之

大阪工業大学

Hadron Spectroscopy Café, Nagoya Univ. 2024年5月17日

Outline

- Physics of light unstable nuclei
- Resonances and non-resonant continuum states
- Complex scaling Method (CSM)
 複素(座標)スケーリング法
- Nuclear model : Cluster model
- Basic properties of CSM
- Many-body resonances
- Level density, Green's function
- Strength functions, breakup reactions

Introduction : Physics of light unstable nuclei

Nuclear Chart

Stable Nuclei $Z \approx N$

Nuclear Radius

Neutron(s) separation energy

	Ζ	Ν	S _n or S _{2n} (MeV)
⁶ He	2	4	0.98 ⁴ He+n+n
¹¹ Li	3	8	<mark>0.37</mark> ⁹ Li+n+n
¹¹ Be	4	7	0.50 ¹⁰ Be+n
¹⁴ Be	4	10	1.27 ¹² Be+n+n

Stable nuclei -- 8 MeV/A

I. Tanihata et. al PLB206(1988)592

Neutron halo & skin structures

- Large matter radius deviated from empirical rule of $r_0 A^{1/3}$
- Small momentum distribution of halo/skin part (T. Kobayashi, NPA538(1992)343c)
- Small neutron(s) separation energy \rightarrow (core + valence neutrons) picture

Borromean property of halo nuclei

- Binding mechanism is essential to understand the structures of halo nuclei.
- Theoretically, resonance description is inevitable for subsystem and the excitation of halo nuclei.

Borromean rings (Wiki)

Coulomb breakup reactions & soft dipole resonance

P.G. Hansen and B.Jonson, Europhys. Lett. 4(1987)409.K. Ikeda, NPA538(1992)355c.R. Kanungo, TM et al., PRL114 (2015) 192502

Complex Scaling Method (CSM) to describe unbound states

Textbook for complex scaling

- Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling
 - Prof. Nimrod Moiseyev (Israel)
 - Physics Reports 302 (1998) 211-293
 - Application to atomic, molecular physics
- Non-Hermitian Quantum Mechanics
 - Prof. Nimrod Moiseyev
 - Cambridge University
 Press (2011)
 - 410 page

Non-Hermitian Quantum Mechanics

NIMROD MOISEYEV

Progress of Theoretical Physics, Vol. 116, No. 1, July 2006

The Complex Scaling Method for Many-Body Resonances and Its Applications to Three-Body Resonances

Shigeyoshi Aoyama, Takayuki Myo, Kiyoshi Katō and Kiyomi Ikeda

- Summary of recent studies of CSM to treat many-body resonances
- Applications to three-body resonant states in two-neutron halo nuclei and three-cluster systems.

Progress in Particle and Nuclear Physics 79 (2014) 1–56

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Recent development of complex scaling method for many-body resonances and continua in light nuclei

Takayuki Myo, Yuma Kikuchi, Hiroshi Masui, Kiyoshi Katō

- Investigate many-body resonant states in weakly bound nuclei very far from the stability lines.
- Using these complex eigenvalues and eigenstates in CSM, we construct the Green's functions to calculate strength functions and breakup cross sections.

Progress of Theoretical and Experimental Physics, Special Sections

Complex scaling : physics of unbound light nuclei and perspective Takayuki Myo and Kiyoshi Katō

- Trends in non-Hermitian Quantum Mechanics
- Editor : Prof. Naomichi Hatano 羽田野直道

PTEP 2020 (2020) 12A101

- Basic application of CS to the unbound phenomena of light nuclei
- Resonant and non-resonant continuum states observed in unstable nuclei
- Continuum level density in the scattering problem using the Green's function

Textbook for scattering problem

- Scattering Theory of Waves and Particles, Roger G. Newton
- 大学演習 量子物理学, 山内恭彦・武田 暁
- Quantum Mechanics of Molecular Rate Processes, Raphael D. Levine (1968)

QUANTUM MECHANICS OF MOLECULAR RATE PROCESSES

Counterplay Materia

Boundary condition for resonances

- α decay : G. Gamow, Z. Phys. 51 (1928) 204.
 - Decaying state : Gamow state
 - Complex energy $E_R = E_r \frac{i\Gamma}{2}$ $(k_R = \kappa i\gamma)$
 - $\Psi(r,t) = \Psi(r) \cdot e^{-\frac{iE_Rt}{\hbar}} = \Psi(r) \cdot e^{-\frac{iE_r}{\hbar}t} \cdot e^{-\frac{\Gamma}{2\hbar}t}$
 - $|\Psi(r,t)|^2 = |\Psi(r)|^2 \cdot e^{-\frac{\Gamma}{\hbar}t}$

$$\Gamma/\hbar$$
 Decay rate [1/s]

- Boundary condition of out-going waves
 - A.J.F. Siegert, Phys. Rev. 56 (1939) 750.

•
$$\Psi(r) \rightarrow \frac{e^{ik_R r}}{r} = \frac{e^{i(\kappa - i\gamma)r}}{r} = \frac{e^{i\kappa r}}{r} \cdot e^{\gamma r} \rightarrow \infty \quad (r \rightarrow \infty)$$
 Divergent
• Incoming wave : $\frac{e^{-ik_R r}}{r} = \frac{e^{-i(\kappa - i\gamma)r}}{r} = \frac{e^{-i\kappa r}}{r} \cdot e^{-\gamma r} \rightarrow 0$ Damping

Discrete states in complex k & E planes

Complex momentum plane

$$k_{\rm R} = \kappa - i\gamma$$

 $k_{\rm AR} = -\kappa - i\gamma = -k_{\rm R}^* = \tilde{k}_{\rm R}$
bi-orthogonal relation 双直交系

Hatano, Sasada, Nakamura, Petrosky, PTP119 (2008)187

Boundary condition for resonances

 Resonance as Decaying state Quadrant-4 in E & k $-E_{\rm R} = E_r - \frac{i\Gamma}{2} \quad (k_{\rm R} = \kappa - i\gamma)$ $-\Psi(r,t) = \Psi(r) \cdot e^{-\frac{iE_R t}{\hbar}} = \Psi(r) \cdot e^{-\frac{iE_r t}{\hbar}} \cdot e^{-\frac{\Gamma t}{2\hbar}}$ Decrease (decaying) $-\Psi(r) \rightarrow \frac{e^{ik_{\rm R}r}}{r} = \frac{e^{i(\kappa-i\gamma)r}}{r} = \frac{e^{i\kappa r}}{r} \cdot e^{\gamma r} \rightarrow \infty \quad (r \rightarrow \infty) \quad \text{Outgoing } (\kappa > 0)$ - Incoming wave : $\frac{e^{-ik_Rr}}{r} = \frac{e^{-i(\kappa-i\gamma)r}}{r} = \frac{e^{-i\kappa r}}{r} \cdot e^{-\gamma r} \to 0$ Anti-Resonance as Capturing state Quadrant-1 in E $-E_{\rm AR} = E_r + \frac{i\Gamma}{2} \quad (k_{\rm AR} = -\kappa - i\gamma)$ Quadrant-3 in k $-\Psi(r,t) = \Psi(r) \cdot e^{-\frac{iE_{AR}t}{\hbar}} = \Psi(r) \cdot e^{-\frac{iE_{rt}}{\hbar}} \cdot e^{+\frac{\Gamma t}{2\hbar}}$ Increase (growing) $-\Psi(r) \to \frac{e^{ik_{AR}r}}{r} = \frac{e^{i(-\kappa - i\gamma)r}}{r} = \frac{e^{-i\kappa r}}{r} \cdot e^{\gamma r} \to \infty \quad (r \to \infty) \quad \text{Incoming} \ (\kappa > 0)$ - Incoming wave : $\frac{e^{-ik_{AR}r}}{r} = \frac{e^{-i(-\kappa-i\gamma)r}}{r} = \frac{e^{i\kappa r}}{r} \cdot e^{-\gamma r} \to 0$ Outgoing

Schematic potential case

A. Csoto, B. Gyarmati, A. T. Kruppa, K. F. Pal, N. Moiseyev, Phys. Rev. A41 (1990) 3469

Complex Scaling

$$H_{\theta}\Phi_{\theta} = E_{\theta}\Phi_{\theta}$$

 $U(\theta): \mathbf{r} \to \mathbf{r} \exp(i\theta), \ \mathbf{k} \to \mathbf{k} \exp(-i\theta), \ H_{\theta} = U(\theta)HU^{-1}(\theta), \ \theta \in \mathbb{R}$

J.Aguilar and J.M.Combes, Commun. Math. Phys.,22(1971)269. E.Balslev and J.M.Combes, Commun. Math. Phys.,22(1971)280. T. Myo, K. Katō, PTP98 (1997) 1275 B.G. Giraud, K. Katō, A. Ohnishi, J. Phys. A **37** (2004)11575 ₁₉

Schrödinger Eq. & wave func. with complex scaling

$$U(\theta)HU^{-1}(\theta) = H_{\theta} = T_{\theta} + V_{\theta} \qquad T_{\theta} = e^{-2i\theta}T, \quad V_{\theta} = V(\mathbf{r}e^{i\theta})$$
$$H\Phi = E\Phi \to H_{\theta}\Phi_{\theta} = E_{\theta}\Phi_{\theta} \qquad \Phi_{\theta}(\mathbf{r}) = e^{\frac{3}{2}\cdot i\theta}\Phi(\mathbf{r}e^{i\theta})$$

- Asymptotic condition ($r \rightarrow \infty$) in complex scaling
- Outgoing wave for decaying state : Φ_R

$$k_{\rm R} = \kappa - i\gamma = K_{\rm R}e^{-i\theta_{\rm R}}, \ \theta_{\rm R} > 0 \qquad E_{\rm R} = E_r - i\frac{\Gamma}{2}, \quad \Phi(t) = e^{-\frac{iE_{\rm R}t}{\hbar}} = e^{-\frac{iE_{\rm r}t}{\hbar}} \cdot e^{-\frac{\Gamma t}{2\hbar}}$$

$$\Phi_{\rm R}(r) \sim \exp(ik_{\rm R}r) = \exp(iK_{\rm R}e^{-i\theta_{\rm R}}r)$$

$$U_{\theta}\Phi_{\rm R}(r) \sim \exp(iK_{\rm R}e^{-i\theta_{\rm R}} \cdot re^{i\theta}) = \exp(iK_{\rm R}re^{i(\theta-\theta_{\rm R})})$$

Keep

analyticity

 $\mathrm{d}\boldsymbol{r} \to \mathrm{d}(\boldsymbol{r}e^{i\theta})$

Jacobian

damping with $\theta > \theta_R$

 $= e^{3i\theta} \mathrm{d}\boldsymbol{r}$

 $= \exp(iK_{\rm R}r\cos(\theta - \theta_{\rm R})) \cdot \exp(-K_{\rm R}r\sin(\theta - \theta_{\rm R}))$

Wave function with and w/o CSM

$$E(0_3^+) = 1.63 - i0.13 (MeV)$$

Divergent behavior

Damping behavior

日本物理学会誌61巻11号814 (2006)

解説「共鳴状態をめぐる理論と 数値計算法の発展」

加藤幾芳、池田清美

Resonance poles with schematic potential

• Gaussian Potential : $V(r) = e^{-ar^2}$

•
$$V_{\theta}(r) = U_{\theta}V(r)U_{\theta}^{-1} = V(re^{i\theta})$$

= $\exp(-ar^2e^{2i\theta})$

$$= \exp(-ar^2 \cos 2\theta - iar^2 \sin 2\theta)$$

Impose damping condition

•
$$\cos 2\theta > 0 \rightarrow 0 < 2\theta < \pi/2$$

• Upper limit of θ

$$V(r) = \frac{V_0}{1 + \exp\left(\frac{r - R}{a}\right)} : \text{Wood-Saxon pot.}$$
$$\rightarrow \frac{re^{i\theta} - R}{a} = i(2n + 1)\pi : \text{divergence}$$

T. Myo, K. Kato, Prog. Theor. Phys. 98 (1998) 1275

Scattering problem in CSM

• Wave function : $\Phi_{\ell}(\mathbf{r}) = R_{\ell}(\mathbf{r})/r \cdot Y_{\ell m}(\hat{\mathbf{r}})$ (single channel)

•
$$\left(-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{\hbar^2}{2\mu}\frac{\ell(\ell+1)}{r^2} + V(r)\right)R_\ell(r) = ER_\ell(r)$$
 : radial part

•
$$R_{\ell}(r) \xrightarrow[r \to \infty]{} u_{\ell}^{(-)}(kr) - S_{\ell}(k)u_{\ell}^{(+)}(kr), \quad E = \frac{\hbar^2 k^2}{2\mu}, \quad S_{\ell}(k) = e^{2i\delta_{\ell}(k)}$$

•
$$u_{\ell}^{(\pm)}(kr) = \rho(-n_{\ell}(kr) \pm i j_{\ell}(kr))$$
 : incoming/outgoing waves.

• In CSM, $r \rightarrow re^{i\theta}$

•
$$\left(-\frac{\hbar^2}{2\mu}\frac{1}{e^{2i\theta}}\frac{d^2}{dr^2}+\frac{\hbar^2}{2\mu}\frac{\ell(\ell+1)}{r^2e^{2i\theta}}+V(re^{i\theta})\right)R_{\ell}^{\theta}(r)=E_{\theta}R_{\ell}^{\theta}(r)$$

•
$$R^{\theta}_{\ell}(r) \xrightarrow[r \to \infty]{} u^{(-)}_{\ell}(kr) - S^{\theta}_{\ell}(k_{\theta})u^{(+)}_{\ell}(kr)$$

 $kr : invariant$

•
$$E_{\theta} = \frac{\hbar^2 k_{\theta}^2}{2\mu}$$
, $k_{\theta} = k e^{-i\theta}$, $S_{\ell}^{\theta}(k_{\theta}) = e^{2i\delta_{\ell}^{\theta}(k_{\theta})}$

Phase shift & Levinson Theorem

- $\delta(E = \infty) \delta(E = 0) = N_B \pi$, N_B : # of bound states
- In CSM, $\delta(|E_{\theta}| = \infty) \delta(|E_{\theta}| = 0) = (N_{\rm B} + N_{\rm R}^{\theta}) \cdot \pi$

M. Rittby, N. Elander and E. Branda, Phys. Rev. A**24**, 1636 (1981).

Linear basis expansion with complex scaling

•
$$\Phi(\mathbf{r}) = \sum_{n=1}^{N} C_n \phi_{n,\ell}(\mathbf{r}), \quad \phi_{n,\ell}(\mathbf{r}) = N_\ell(b_n) r^\ell e^{-(r/b_n)^2} Y_\ell(\hat{\mathbf{r}})$$

• $H_{\theta}\Phi_{\theta}(\mathbf{r}) = E_{\theta}\Phi_{\theta}(\mathbf{r}), \quad \Phi_{\theta}(\mathbf{r}) = \sum_{n=1}^{N} C_{n}^{\theta} \phi_{n,\ell}(\mathbf{r})$

•
$$\langle \tilde{\phi}_m | H_{\theta} | \phi_n \rangle = \int \tilde{\phi}_m^*(\mathbf{r}) H(\mathbf{r}e^{i\theta}) \phi_n(\mathbf{r}) d\mathbf{r}$$

 $= \int \phi_m(\mathbf{r}e^{-i\theta}) H(\mathbf{r}) \phi_n(\mathbf{r}e^{-i\theta}) d(\mathbf{r}e^{-i\theta})$
 $= \langle \phi_{m,-\theta}^* | H | \phi_{n,-\theta} \rangle = H_{m,n}^{\theta} = H_{n,m}^{\theta}$

Gaussian

 b_1, b_2, \cdots, b_N [fm]

geometric progression

$$b_n = b_0 \gamma^{n-1}$$

$$ilde{\phi}_m^*(r) = \phi_m(r)$$

radial only

• Norm $N_{m,n} = \langle \tilde{\phi}_m | \phi_n \rangle$, Energy $E_{\theta} = \frac{\langle \Phi_{\theta} | H_{\theta} | \Phi_{\theta} \rangle}{\langle \tilde{\Phi}_{\theta} | \Phi_{\theta} \rangle}$ Applicable to Many-body system

- Bi-variational principle $\delta E_{\theta} = 0$ (stationary condition with respect to θ)
- Generalized eigenvalue problem $\sum_{n=1}^{N} (H_{m,n}^{\theta} E_{\theta} N_{m,n}) C_{n}^{\theta} = 0$

Cauchy–Riemann equations in CSM

• $E = E(b,\theta) = \frac{E(be^{i\theta})}{E(be^{i\theta})} = E_R(be^{i\theta}) + iE_I(be^{i\theta})$ $\begin{cases} x = b\cos\theta\\ y = b\sin\theta \end{cases}$

•
$$b\frac{\partial E_R}{\partial b} = \frac{\partial E_I}{\partial \theta}, \quad b\frac{\partial E_I}{\partial b} = -\frac{\partial E_R}{\partial \theta}, \quad \left(\frac{\partial E_R}{\partial x} = \frac{\partial E_I}{\partial y}, \quad \frac{\partial E_I}{\partial x} = -\frac{\partial E_R}{\partial y}\right)$$

•
$$\frac{\partial E}{\partial \theta} = \frac{\partial E_R}{\partial \theta} + i \frac{\partial E_I}{\partial \theta} = -b \frac{\partial E_I}{\partial b} + ib \frac{\partial E_R}{\partial b} = ib \left(\frac{\partial E_R}{\partial b} + i \frac{\partial E_I}{\partial b}\right) = ib \frac{\partial E}{\partial b}$$

- Search for stationary point for both variables
- $\frac{\partial E}{\partial \theta} = 0 \Leftrightarrow \frac{\partial E}{\partial b} = 0$
- " θ -trajectory" \perp "b-trajectory" (Orthogonality)

$$-\frac{\partial E}{\partial b} \equiv E_b, \ \frac{\partial E}{\partial \theta} \equiv E_\theta, \quad \frac{E_{I,b}}{E_{R,b}} \times \frac{E_{I,\theta}}{E_{R,\theta}} = \frac{E_{I,b}}{E_{R,b}} \times \frac{b \cdot E_{R,b}}{(-b \cdot E_{I,b})} = -1$$

直交

b- and ϑ-trajectory in CSM

- Solutions depends on the basis parameter and θ because of the approximation of the wave functions.
- Search for the stationary point for complex energy $E(b, \theta)$.

⁵He : α+n system using discretized states

energy eigenvalues

30 Gaussian basis functions

⁵He : α +n system with discretized continuum states

Matrix elements of resonances

Convergence factor method To avoid the singularity of Φ_R at $r = \infty$

$$\langle O \rangle = \langle \widetilde{\Phi}_R | O | \Phi_R \rangle = \lim_{\alpha \to 0} \int d\mathbf{r} \, \widetilde{\Phi}_R^* \, O \, \Phi_R \cdot e^{-\alpha r^2}$$

Integration along $re^{i\theta}$

Ya.B. Zel'dovich, Sov. Phys. JETP 12 (1961) 542. N. Hokkyo, Prog. Theor. Phys. 33(1965)1116.

damping condition at $r \rightarrow \infty$

$$\langle O \rangle = \lim_{\alpha \to 0} \int_{C^{\theta}} d(\mathbf{r}e^{i\theta}) \, \tilde{\Phi}_{R}^{*}(\mathbf{r}e^{i\theta}) O(\mathbf{r}e^{i\theta}) \Phi_{R}(\mathbf{r}e^{i\theta}) \cdot e^{-\alpha r^{2}e^{2i\theta}}$$

$$= \int_{C^{\theta}} d(\mathbf{r}e^{i\theta}) \, \tilde{\Phi}_{R}^{*}(\mathbf{r}e^{i\theta}) O(\mathbf{r}e^{i\theta}) \Phi_{R}(\mathbf{r}e^{i\theta})$$

$$= \langle U_{\theta} \tilde{\Phi}_{R} | U_{\theta} O U_{\theta}^{-1} | U_{\theta} \Phi_{R} \rangle$$

$$= \langle \tilde{\Phi}_{R}^{\theta} | O_{\theta} | \Phi_{R}^{\theta} \rangle$$
B. Gyarmati and T. Vertse,
Nucl. Phys. A160, 523 (1971).

 θ -independent

 $r \rightarrow r e^{i\theta}$

Matrix elements of resonances

M. Homma, T. Myo, K. Katō, Prog. Theor. Phys. 97 (1997) 561

C-product for notation

- $\langle \Phi_{AR} | \hat{O} | \Phi_R \rangle = \langle \tilde{\Phi}_R | \hat{O} | \Phi_R \rangle = (\Phi_R | \hat{O} | \Phi_R) = \{\text{radial}\} \times \{\text{angular}\}$
- {radial} = $\int_0^{\infty} \phi_R(r) \hat{O}(r) \phi_R(r) r^2 dr$: No-complex conjugate
- {angular} = $\int \phi_{\rm R}^*(\hat{r}) \hat{O}(\hat{r}) \phi_{\rm R}(\hat{r}) d\hat{r}$: Ordinary definition
- $\langle \Phi_{AR}^{-\theta} | \hat{O}^{\theta} | \Phi_{R}^{\theta} \rangle = \langle \tilde{\Phi}_{R}^{\theta} | \hat{O}^{\theta} | \Phi_{R}^{\theta} \rangle = \left(\Phi_{R}^{\theta} | \hat{O}^{\theta} | \Phi_{R}^{\theta} \right)$

Nimrod Moiseyev, Physics Reports 302 (1998) 211-293

1. Resonance spectroscopy with CSM

- 2. Scattering states with CSM
 - Complex-scaled Green's function

Nuclear Chart

Stable Nuclei $Z \approx N$

Neutron-rich He isotopes, Experiments

<u>TUNL Nuclear Data</u> <u>Evaluation</u>

Nuclear Model

- Stable core nucleus + valence nucleons
 - -⁸He = α +n+n+n (5-body problem)
 - core nucleus is changeable such as ¹⁶O

- Method
 - Particle coordinates : core nucleus is a center
 - Single-particle picture with configuration mixing (s-wave, p-wave,)
 - Relative motion : few-body approach with Gaussian basis expansion
 - Unified description of strong/weak bindings of valence particles
 - Complex Scaling for resonances (Siegert condition) in many-body systems
 - $r_i \rightarrow r_i e^{i\theta}$, $k_i \rightarrow k_i e^{-i\theta}$ with common scaling angle θ

Hamiltonian & Wave function for N-rich systems

 $H_A = H_{core} + H_{val.} + H_{core-val.}$ valence neutron number : $N_V = 1, 2, \cdots$

$$\Phi_{A} = \mathcal{A}\{\Psi_{\text{core}} \cdot \sum_{n}^{N} C_{n} \Psi_{\text{val},n}\}$$
n : configuration

$$\Psi_{\text{val},n} = \mathcal{A}\{\phi_{n1}(\boldsymbol{r}_1)\phi_{n2}(\boldsymbol{r}_2)\phi_{n3}(\boldsymbol{r}_3)\cdots\}$$
f
single nucleon state, $s_{1/2}, p_{1/2}, p_{3/2}, \cdots$

Orthogonality Condition Wodel

 $H_A \Phi_A = E \Phi_A$ $H_{core} \Psi_{core} = E_{core} \Psi_{core}$

 $\phi_{n\ell j}(\boldsymbol{r}) = r^{\ell} e^{-a_n r^2} \big[Y_{\ell}(\hat{\boldsymbol{r}}), \chi_{1/2}^{\sigma} \big]_j$

Range parameter a_1, a_2, \cdots, a_N

 $\delta E = 0$: Solve eigenvalue problem

$$\sum_{n}^{N} \left\langle \Psi_{\text{val},n\prime} \middle| \sum_{i}^{N_{V}+\text{core}} t_{i} - T_{G} + \sum_{i}^{N_{V}} V_{i}^{\text{core}-N} + \sum_{i}^{N_{V}} V_{ij}^{NN} - (E - E_{\text{core}}) \middle| \Psi_{\text{val},n} \right\rangle C_{n} = 0$$

Orthogonality Condition Model

Y. Suzuki, K. Ikeda, PRC38(1988)410

H. Masui, K. Kato, K. Ikeda, PRC73(2006)034318

Complex Scaling for 3-body case

2-body resonance (E_r -i $\Gamma/2$)

Complex Scaling for 3-body Borromean case

$$U(\theta) : \mathbf{r} \to \mathbf{r} \cdot \exp(i\theta), \quad \mathbf{k} \to \mathbf{k} \cdot \exp(-i\theta), \quad \theta \in \mathbf{R}$$

Halo nuclei : "core+n+n" with Borromean condition ⁶He=⁴He+n+n, ¹¹Li=⁹Li+n+n, ¹⁴Be=¹²Be+n+n, ...

Treatments of unbound states in CSM

- Each relative motion is solved with Gaussian expansion $\phi_{\ell}(\mathbf{r}) = \sum_{n}^{N} C_{n} \cdot r^{\ell} e^{-(r/b_{n})^{2}} Y_{\ell}(\hat{\mathbf{r}})$
- Exact asymptotic condition for resonances (2-body & 3-body).
- 2- & 3-body continuum states are discretized.

Energy spectrum of ⁶He with α +n+n model

A. Csoto, PRC49 ('94) 3035, S. Aoyama et al. PTP94('95)343, T. Myo et al. PRC63('01)054313

Hamiltonian for He isotopes

- $V_{\alpha n}$: microscopic KKNN potential
 - s,p,d,f-waves of α -*n* scattering phase shifts
- V_{nn}: Minnesota central potential
 + Coulomb for *p*-rich nuclei

Fit energy of the ground state of ⁶He

A. Csoto, PRC48(1993)165. K. Arai, Y. Suzuki and R.G. Lovas, PRC59(1999)1432. TM, S. Aoyama, K. Kato, K. Ikeda, PRC63(2001)054313. TM et al. PTP113(2005)763.

He isotopes : Experiment & Theory

α +n+n+n+n

- Solve the motion of valence neutron precisely
- Reproduction & Prediction

TM. M. Odsuren, K. Katō, PRC104 (2021)

Proton-rich : α+*p*+*p*+*p*+*p*

α+p+p+p

- Coulombic 5-body problem
- Isospin symmetry breaking between n-rich & p-rich

R. J. Charity *et al.*, PRC84 (2011) TM. M. Odsuren, K. Katō, PRC104 (2021)

Energy of ⁸He with 5-body complex scaling

Eigenvalue problem with 32,000 dim.

Full diagonalization of complex matrix @ SX8R of NEC (Osaka Univ.)

• Photodisintegration with $\alpha + \alpha + n$ 3-body approach

⁹Be property of 1/2⁺ state

Odsuren, Kikuchi, Myo, Aikawa, Katō, Physical Review C (2015) 014322

Backup

Matrix Elements

- Radial component : $\phi_{AR}(r) = \tilde{\phi}_{R}(r) = \phi_{R}^{*}(r), \quad \phi_{AR}^{-\theta}(r) = \left\{\phi_{R}^{\theta}(r)\right\}^{*}$
- Angular component : $ilde{\phi}_{\mathrm{AR}}(\hat{\pmb{r}}) = \phi_{\mathrm{R}}(\hat{\pmb{r}})$
- $\langle \Phi_{AR} | \hat{\partial} | \Phi_R \rangle = \int \Phi_{AR}^*(r) \hat{\partial}(r) \Phi_R(r) dr$ $= \int_0^\infty \phi_{\rm AR}^*(r) \hat{O}(r) \phi_{\rm R}(r) r^2 dr \times \int \phi_{\rm AR}^*(\hat{r}) \hat{O}(\hat{r}) \phi_{\rm R}(\hat{r}) d\hat{r}$ $= \int_0^\infty \phi_{\rm R}(r) \hat{O}(r) \phi_{\rm R}(r) r^2 dr \times \int \phi_{\rm R}^*(\hat{r}) \hat{O}(\hat{r}) \phi_{\rm R}(\hat{r}) d\hat{r}$ angular radial • $\langle \Phi_{AR} | \hat{\partial} | \Phi_R \rangle = \int [\Phi_{AR}^*(\mathbf{r})]^{\theta} \hat{\partial}^{\theta}(\mathbf{r}) \Phi_R^{\theta}(\mathbf{r}) d\mathbf{r}$ $= \int \left[\Phi_{AB}^{-\theta}(\boldsymbol{r}) \right]^* \hat{O}^{\theta}(\boldsymbol{r}) \Phi_{B}^{\theta}(\boldsymbol{r}) \, d\boldsymbol{r} = \left\langle \Phi_{AB}^{-\theta} | \hat{O}^{\theta} | \Phi_{B}^{\theta} \right\rangle$ $\theta > 0$

Normalization of resonance w.f.

- Bi-orthogonal states by T. Berggren, NPA109(1968)265.
- Pole : $\tilde{k} = -k^*$, $\tilde{\Psi}^*(\mathbf{r}) = \Psi(\mathbf{r})$ from *S*-matrix property
- ket-state : $\Psi_R = \sum_{n=1}^N C_n \phi_n$, n : channel (1, ..., N)
- bra-state : $\widetilde{\Psi}_R = \sum_{n=1}^N \widetilde{C}_n \widetilde{\phi}_n$ (bi-orthogonal state)
- Norm : $\langle \tilde{\Psi}_R | \Psi_R \rangle = \sum_m^N \sum_n^N \tilde{C}_m^* C_n \langle \tilde{\phi}_m | \phi_n \rangle$ $= \sum_n^N C_n^2 = \delta_{m,n} \quad \tilde{C}_m^* = C_m$ $= C_1^2 + C_2^2 + \dots + C_N^2$ complex = 1
- $\operatorname{Re}(\sum_{n=1}^{N} C_{n}^{2}) = 1$, $\operatorname{Im}(\sum_{n=1}^{N} C_{n}^{2}) = 0$.

Hermite case

 $1 = \sum_{n=1}^{N} |C_{n}|^{2}$