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 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…

size of hadron source,  
momentum dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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Scattering studies with low-energy Kp femtoscopy in pp collisions at the LHC ALICE Collaboration
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Fig. 2: (Color online)(K�p � K+p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1. The measurement is presented by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. Three different potentials
were considered: Coulomb potential (blue band), Kyoto model [44–48] (light blue band), Jülich model [49] where
the physics masses of K� and K0are used [50] with the Coulomb interaction included (red band). In the bottom
panels, differences between data and model are shown. The bands represent the systematic uncertainty related to
the determination of the l parameter and to the source radius.

threshold of the K0n (K0n) channel at plab = 89 MeV/c [52] which corresponds to k
⇤ = 58 MeV/c. In

order to quantify the significance of the observed structure, and since the three measured distributions are
mutually compatible, the C(k⇤) measured at the three different energies were summed using the number
of events for each data sample as a weight. The resulting C(k⇤) was interpolated with a spline considering
the statistical uncertainties and the derivative of the spline was then evaluated. A change in the slope of
the derivative consistent with a cusp effect in the k

⇤ region between 50 and 60 MeV/c at the level of 4.4s
has been observed, to be compared with a significance of 30s for L(1520). The measurement presented
in this letter is therefore the first experimental evidence for the opening of the K0n (K0n) isospin breaking
channel, showing that the femtoscopy technique is a unique tool to study the Kp scattering, where the
conventional scattering experiments at fixed target are difficult to perform.

The experimental correlation functions were also used to test different potentials to describe the interac-
tion between K+p (K�p) and K�p (K+p). The measured correlation function C(k⇤) is compared with a
theoretical function using the following equation

C(k⇤) = (a+b · k⇤) ·
h
1+l · (C(k⇤)theoretical �1)

i
, (1)

where the baseline (a+ b · k
⇤) is introduced to take into account the remaining non-femtoscopic back-

ground contributions which might be present also after the ST selection. The slope, b, of the baseline is
fixed from Monte Carlo simulations based on PYTHIA 6 [53] and PYTHIA 8 [54], while the normal-
ization, a, is a free parameter of the fit. To assign a systematic uncertainty related to the slope of the
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Table 1: Summary of track selection criteria

Selection variable Value
|h | < 0.8
Number of TPC clusters � 70
DCAxy to primary vertex < 1 cm
DCAz to primary vertex < 1 cm
Tracks with kink topology rejected

K+(K�) transverse momentum pT
0.15 < pT < 0.3 GeV/c
0.4 < pT < 1.4 GeV/c

p(p) transverse momentum pT
0.4 < pT < 0.6 GeV/c
0.8 < pT < 3.0 GeV/c

Particle identification
n-sTPC <3
for K with pT > 0.4 and p with pT > 0.8:
n-sTPC <3 + n-sTOF <3

the deviations. The total systematic uncertainty was calculated as the quadratic sum of each source’s
contribution and amounts to about 3% in the considered k

⇤ intervals.

The measured correlation functions for (K+p � K�p) and (K�p � K+p) are shown in the upper panels
of Fig. 1 and Fig. 2.
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Fig. 1: (Color online)(K+p � K�p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1 including only a Coulomb interaction (blue) or in addition the strong
interaction implemented in the Jülich model (red). The measurement is shown by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. In the bottom panels of the
figure, the difference between the data and models are shown. The bands represent the systematic uncertainty
related to the determination of the l parameter and to the source radius.

In both figures, each panel corresponds to a different collision energy, as indicated in the legend. The
structure that can be seen in the (K�p � K+p) correlation function at k

⇤ around 240 MeV/c in Fig. 2 is
consistent with the L(1520) which decays into K�p, with a center-of-mass momentum for the particle
pair of 243 MeV/c [51]. The correlation function of (K�p � K+p) exhibits also a structure between 50
and 60 MeV/c for the three collision energies. The k

⇤ position of the structure is consistent with the
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data

CðQÞ¼N
!
1þλ

"
−1

2
expð−r20Q2Þþ1

4

jfðkÞj2

r20

"
1− 1

2
ffiffiffi
π

p d0
r0

$

þRefðkÞffiffiffi
π

p
r0

F1ðQr0Þ−
ImfðkÞ
2r0

F2ðQr0Þ
$

þares expð−r2resQ2Þ
%
; ð4Þ

where k ¼ Q=2, F1ðzÞ ¼
R
1
0 ex

2−z2=zdx and F2ðzÞ ¼
ð1 − e−z

2Þ=z in Eq. (4). The scattering amplitude is
given by

fðkÞ ¼
"
1

f0
þ 1

2
d0k2 − ik

$−1
; ð5Þ

where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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Experimental data in various sectors 

• pϕ

• K±p
• ΛΛ
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Fig. 1. Results for the fit of the pp data at √s = 13 TeV. The p–p correlation function (left panel) is fitted with CATS (blue line) and the !–! correlation function (right 
panel) is fitted with the Lednický model (yellow line). The dashed line represents the linear baseline from Eq. (5), while the dark dashed-dotted line on top of the !–! data 
shows the expected correlation based on quantum statistics alone, in case of a strong interaction potential compatible with zero.

only significant contribution is p–!→p–p, where the p–! inter-
action is modeled using the scattering parameters from a next-to-
leading order (NLO) χEFT calculation [41] and the corresponding 
correlation function is computed using the Lednický model. The 
remaining residuals are considered flat, apart from p–#−→p–!, 
p–$0 →p–! and p–#(1530)− →p–#− , where the interaction can 
be modeled. For the p–#− interaction a recent lattice QCD poten-
tial, from the HAL QCD collaboration [42,43], is used. The p–$0 is 
modeled as in [44], while p–#(1530)− is evaluated by taking only 
the Coulomb interaction into account.

After all corrections have been applied to Ctot(k∗), the final fit 
function is obtained by multiplying it with a linear baseline (a +
bk∗) describing the normalization and non-femtoscopy background 
[25]

Cfit(k
∗) = (a + bk∗)Ctot(k∗). (5)

Fig. 1 shows an example of the p–p and !–! correlation func-
tions measured in pp collisions at 

√
s = 13 TeV, together with 

the fit functions. The p–p experimental data show a flat behav-
ior in the range 200 < k∗ < 400 MeV/c, thus by default the slope 
of the baseline is assumed to be zero (b = 0) and the corre-
lation is fitted in the range k∗ < 375 MeV/c. The resulting r0
values are 1.182 ± 0.008(stat)+0.005

−0.002(syst) fm in pp collisions at √
s = 13 TeV and 1.427 ± 0.007(stat)+0.001

−0.014(syst) fm in p–Pb colli-
sions at √sNN = 5.02 TeV. In pp collisions at 

√
s = 7 TeV the source 

size is r0 = 1.125 ± 0.018(stat)+0.058
−0.035(syst) fm [25].

The systematic uncertainties of the radius r0 are evaluated fol-
lowing the prescription established during the analysis of pp col-
lisions at 

√
s =7 TeV [25]. The upper limit of the fit range for the 

p–p pairs is varied within k∗ ∈ {350, 375, 400} MeV/c and the in-
put to the λ parameters is modified by 20%, keeping primary and 
secondary fractions constant.

Two further systematic variations are performed for the p–p 
correlation. The first concerns the possible effect of non-femto-
scopy contributions to the correlation functions, which can be 
modeled by a linear baseline (see Eq. (5)) with the inclusion of 
b as a free fit parameter. The final systematic variation is to model 
the p–! feed-down contribution by using a leading-order (LO) [41,
45] computation to model the interaction. The effect of the latter 
is negligible, as the transformation to the p–p system smears the 
differences observed in the pure p–! correlation function out.

To investigate the !–! interaction the source sizes are fixed to 
the above results and the !–! correlations from all three data 
sets are fitted simultaneously in order to extract the scattering 

parameters. The correlation functions show a slight non-flat be-
havior at large k∗ , especially for the pp collisions at 

√
s = 13 TeV 

(right panel in Fig. 1). Thus the fit is performed by allowing a non-
zero slope parameter b (see Eq. (5)). The fit range is extended to 
k∗ < 460 MeV/c in order to better constrain the linear baseline. 
Due to the small primary λ parameters (see Table 1) the !–! cor-
relation signal is quite weak and the fit shows a slight systematic 
enhancement compared to the expected Ctot(k∗) due to quantum 
statistics only, suggestive of an attractive interaction. However, the 
current statistical uncertainties do not allow the !–! scattering 
parameters to be extracted from the fit. Therefore, an alternative 
approach to study the !–! interaction will be presented in the 
next section. Systematic uncertainties related to the !–! emission 
source may arise from several different effects, which are discussed 
in the rest of this section.

Previous studies have revealed that the emission source can be 
elongated along some of the spatial directions and have a mul-
tiplicity or mT dependence [46,47]. In the present analysis it is 
assumed that the correlation function can be modeled by an ef-
fective Gaussian source. The validity of this statement is verified 
by a simple toy Monte Carlo, in which a data-driven multiplicity 
dependence is introduced into the source function and the result-
ing theoretical p–p correlation function computed with CATS. The 
deviations between this result and a correlation function obtained 
with an effective Gaussian source profile are negligible.

Possible differences in the effective emitting sources of p–p and 
!–! pairs due to the strong decays of broad resonances and mT
scaling are evaluated via simulations and estimated to have at 
most a 5% effect on the effective source size r0. This is taken into 
account by including an additional systematic uncertainty on the 
r!–! value extracted from the fit to the p–p correlation.

4. Results

In order to extract the !–! scattering parameters, the correla-
tion functions measured in pp collisions at 

√
s =7, 13 TeV as well 

as in p–Pb collisions at √sNN = 5.02 TeV are fitted simultaneously. 
The right panel in Fig. 1 shows the !–! correlation function ob-
tained in pp collisions at 

√
s = 13 TeV together with the result 

from the fit.
Since the uncertainties of the scattering parameters are large, 

different model predictions are tested on the basis of their agree-
ment with the measured correlation functions.

One option is to use a local potential and obtain C(k∗) based 
on the exact solution from CATS, with the source size fixed to the 
value obtained from the fit to the p–p correlations. Many of the 

• pΩ

STAR AuAu: PRL 114,022301(2015) 
ALICE : PLB 797 (2019) 134822 
         PbPb: PRC99, 024001 (2019) 
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the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (⊕) of particles and antiparticles (p Ξ p Ξ p Ξ– ⊕ ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– ⊕ ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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selection criteria of protons and kaons as well as the lower
limit of the sphericity. These variations are chosen such that
any combination leads to a maximum change of !20% of
Nsame within k" < 200 MeV=c in order to retain the
statistical significance. Systematic uncertainties associated
with the background description are evaluated by varying
the fit ranges and the order of the polynomial assumed for
Cbaselineðk"Þ. Uncertainties related to the unfolding are
accounted for according to Ref. [38]. This results in a
relative systematic uncertainty at low k" of 2.8%.
In correlation measurements, the detected pairs are

emitted in the final state of the scattering processes. The
correlation function of the sample is then sensitive to elastic
and inelastic channels produced in the collision [58].
Inelastic channels opening below threshold act as an
effective increase of the correlation function. The relevant
channels for the p-ϕ system, Λ-K and Σ-K are located
substantially below threshold. Channels appearing above
threshold lead to a cusp structure in Cðk"Þ in the vicinity of
the threshold. Because of the large uncertainties and the
broad bin width, no such structures are observed at the
opening of the Λ-K" (k" ¼ 221.6 MeV=c) and Σ-K"

(k" ¼ 357.4 MeV=c) thresholds.
In order to interpret the measured genuine p-ϕ correla-

tion one has to consider that the p-ϕ interaction features
one isospin and two spin configurations. Since the latter
cannot be disentangled, spin-averaged results are pre-
sented. The strong p-ϕ interaction is modeled employing
the Lednický-Lyuboshits approach [57]. Coupled channel
effects are incorporated via an imaginary contribution to the
scattering length. For large values of d0, the term ∝ d0=r0
that corrects the asymptotic wave function for small sources
has an impact on the modeled correlation function [34].
Additionally, in line with studies of charmonium states
[23,59], phenomenological potentials are employed to

model the p-ϕ interaction [24], including Yukawa-
type, VYukawaðrÞ ¼ −A × r−1 × e−α×r, and Gaussian-type
VGaussianðrÞ ¼ −Veff × e−μ×r

2
potentials. The correlation

functions based on these potentials are obtained with the
correlation analysis tool using the Schrödinger equation
(CATS) [60].
The particle-emitting source is extracted from studies of

p-p and p-Λ pairs [33], which demonstrated that by
accounting for the effect of strong resonances feeding to
the particle pair of interest, a common source for both pairs is
found. The primordial source depends on the transverse
massmT of the particle pair and is obtained by evaluating the
core radius at the hmTi ¼ 1.66 GeV=c2 of the p-ϕ pairs.
The strong decays feeding to protons are explicitly consid-
ered [33], while for the ϕ a 100% primordial fraction is
assumed [14]. The resulting source function is parametrized
by a Gaussian profile with reff ¼ ð1.08! 0.05Þ fm.
The interaction parameters are extracted by fitting the

genuine p-ϕ correlation function Cp-ϕðk"Þ with the respec-
tive model within k" < 200 MeV=c. The systematic uncer-
tainties of the procedure are assessed by varying the upper
limit of the fit range by !30 MeV=c and the source radius
within its uncertainties.
The real and imaginary parts of the scattering length

obtained from the Lednický-Lyuboshits fit are ℜðf0Þ ¼
0.85! 0.34ðstatÞ ! 0.14ðsystÞ fm and ℑðf0Þ ¼ 0.16!
0.10ðstatÞ ! 0.09ðsystÞ fm. The resulting effective range
is d0 ¼ 7.85! 1.54ðstatÞ ! 0.26ðsystÞ fm. ℜðf0Þ deviates
by 2.3σ from zero, indicating the attractiveness of the p-ϕ
interaction in the approximate vacuum of pp collisions.
Notably, ℑðf0Þ vanishes within uncertainties, indicating
that inelastic processes do not play a prominent role in the
interaction. Instead, the elastic p-ϕ interaction appears to
be dominant in vacuum. The scattering length is larger than
values found in literature: a recent analysis of data recorded
with the CLAS experiment reports jf0j ¼ ð0.063!
0.010Þ fm [61]; a value of around f0 ¼ 0.15 fm is con-
sistent with LEPS measurements of the ϕ cross section
[62,63]; studies of an effective Lagrangian combining
chiral SU(3) dynamics with vector meson dominance
obtain f0 ¼ ð−0.01þ i0.08Þ fm [64]; and a QCD sum
rule analysis finds f0 ¼ ð−0.15! 0.02Þ fm [65]. The
obtained scattering lengths are rather model dependent
since the data refer to the properties of the ϕmeson inside a
nucleus and not to a two-body system as in this work. This
underlines the importance of direct measurements of the
two-body N-ϕ interaction to provide constraints for theo-
retical models.
Finally, the data are employed to constrain the param-

eters of phenomenological Gaussian- and Yukawa-type
potentials. As the imaginary contribution of the scattering
length is consistent with zero, only real values are used for
the parameters. The fits yield a comparable degree of
consistency as the fit with the Lednický-Lyuboshits
approach. The resulting values for the Gaussian-type
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FIG. 2. The genuine p-ϕ correlation function Cp-ϕðk"Þ with
statistical (bars) and systematic uncertainties (boxes). The red
band depicts the results from the fit employing the Lednický-
Lyuboshits approach [57]. The width corresponds to one standard
deviation of the uncertainty of the fit.
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Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 
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Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 

STAR AuAu

ALICE pp

Femtoscopic data
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 How to control source size R

Hadron correlation in high energy nuclear collision

R
p

•  collisionspp

Pb

p

p
Pb

Pb

Pb

Pb

• Pb collisionsp • PbPb collisions

• peripheral • central

∼ 1 fm ≳ 5 fm∼ 3 fm∼ 1.5 fm
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 Line shapes of : relation to interactionC(q)
Source size dependence

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(x) −

Im ℱ(q)
R

F2(x)]
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Source size dependence for typical for bound state cases!
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 Importance of source size dependence  

Hadron correlation in high energy nuclear collision

• Bound state

• More interaction detail
• Energy dependence/potential shape

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300

Small R

Large R

• Coupled channel effect 
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FIG. 3. (a) Correlation function with both strong and the
Coulomb attractions for two different values of the static source
sizes, Rp,! = 2.5 fm (solid lines) and 5 fm (dashed lines). (b) Same
correlation function as (a), but divided by the Gamow factor.

we propose to introduce an “SL (small-to-large) ratio” of the
correlation functions for systems with different source sizes,

CSL(Q) ≡
CRp,!=2.5fm(Q)

CRp,!=5fm(Q)
, (6)

as shown in Fig. 4. An advantage of this ratio is that the effect
of the Coulomb interaction for small Q is largely canceled, so
that it has a good sensitivity to the strong interaction without
much contamination from the Coulomb interaction.

Effects of expansion and freeze-out time. The results so far
have been obtained with a simplified static source function (4).
In reality, the collective expansion takes place in high-energy

 0.5
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Q=|mpkΩ-mΩkp|/M [MeV/c]

VI
VII
VIII

FIG. 4. CSL(Q) for the static source between the different source
sizes, Rp,! = 2.5 and 5 fm.

heavy ion collisions. Also, the freeze-out of multistrange
hadrons may occur prior to other hadrons due to small cross
sections [24,25]. To see the influences of these dynamical
properties, we consider the following source model with a
1-dim Bjorken expansion [23]:

S(xi,ki) = N ′
i E

tr
i

1

eEtr
i /Ti + 1

e
− x2+y2

2(Rtr
i

)2 δ(τ − τi), (7)

where Etr
i =

√
(ktr

i )2 + m2
i cosh(yi − ηs) with the momen-

tum rapidity yi and the space-time rapidity ηs =
ln

√
(t + z)/(t − z). The temperature and the proper time at

the thermal freeze-out are denoted by Ti and τi , respectively.
The transverse source size is denoted by the parameter Rtr

i . We
have not taken into account the transverse collective expansion
explicitly in the present paper, since its effect on C(Q) has been
shown to be effectively absorbed into a slight modification of
Rtr

i as shown for the %% correlation with the same model [16].
We consider a small system with Rtr

p = Rtr
! = 2.5 fm

and a large system with Rtr
p = Rtr

! = 5 fm. Following the
results of the dynamical analyses of the peripheral and central
Pb+Pb collisions at

√
sNN = 2.76 TeV with hydrodynamics

+ hadronic transport [24], we take τp (τ!) = 3 (2) fm
for the former, and τp (τ!) = 20 (10) fm for the latter as
characteristic values. We take Tp,! = 164 MeV for peripheral
collisions [26], while Tp (T!) = 120 (164) MeV for central
collisions [27]. Under the expanding source, Eq. (1) has
explicit K dependence: For illustrative purpose, we take the
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Morita et al. PRC 94 (2016)

CSL = Csmall R /CLarge R

—> fail of LL formula 

nearby resonance, long range int….
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How to construct correlation model from theory;   ℱ(q) → C(q)

Hadron correlation in high energy nuclear collision

• Using effective potential

• Construct the eff. potential by reproducing the amplitude  (or threshold parameters ( ))ℱ a0, re

• Solving the Schrödinger eq.          φ

• Using half offshell T-matrix Tl(q, k; E)

• Using Lednicky-Lyuboshitz formula

• Approximation for the simple interaction 
• Direct relation between  and C(q) ℱ(q)

J. Haidenbauer / Nuclear Physics A 981 (2019) 1–16 5

1 − r0/(2
√

πR) is a correction that accounts for the deviation of the true wave function from the 
asymptotic form [7,9].

Now we connect with our own formalism and conventions and describe how r-space wave 
functions can be evaluated from reaction amplitudes that are calculated in momentum space by 
solving the LS equation, as it is the case for our interaction potentials for "N [30], "", and #N

[32], and for K̄N scattering [33,34]. To begin with we rewrite the asymptotic form (5) in terms 
of Bessel and Hankel functions [37], for arbitrary angular momentum l

ψ̃(k, r) → 1
2

[
h

(2)
l (kr) + e2iδh

(1)
l (kr)

]

→ jl(kr) − iρ(k)Tl(k)h
(1)
l (kr) , (7)

where the wave functions in Eqs. (5) and (7) are related by ψ(k, r) = e−2iδψ̃(k, r). The on-shell 
reaction amplitude Tl(k) introduced in Eq. (7) is related to the S-matrix via Sl = exp(2iδ) =
1 − 2i ρ(k) Tl , where ρ(k) = k E1(k)E2(k)/(E1(k) +E2(k)) with Ei(k) =

√
m2

i + k2 being the 
energies of the particles 1 and 2. In the non-relativistic case this reduces to ρ(k) = k µ12 with 
the reduced mass µ12 = m1m2/(m1 + m2). In order to compute the wave function away from 
the asymptotic region one needs the reaction amplitude Tl half-off-shell and one has to exploit 
the relations |ψ⟩ = |φ⟩ + G0V |ψ⟩ and V |ψ⟩ = T |φ⟩, cf. Refs. [37] or [38], where |φ⟩ stands 
for the free wave and G0 is the free two-body Green’s function. Explicitly this reads for the 
single-channel case and after a partial-wave expansion

ψ̃(k, r) = jl(kr) + 1
π

∫
jl(qr) dqq2 1

E − E1(q) − E2(q) + iϵ
Tl(q, k;E) , (8)

where E is the total energy, i.e. E = E1(k) + E2(k). Obviously, this Fourier–Bessel transform 
can be performed for T matrices that result from any type of interaction, also for the ones of 
non-local potentials that typically arise in applications of chiral effective field theory [30,32].

The extension to coupled channels or (angular-momentum) coupled partial waves is straight 
forward. First we note that the relation between the S and T matrices is now

Sβα = δβα − 2i
√

ρβ ρα Tβα (9)

where ρα and ρβ are the corresponding phase-space factors in the incoming and outgoing chan-
nels and S and T are now matrices in the channel space. The asymptotic form Eq. (7) goes over 
into [39]

ψ̃βα(r) →
√

ρβ

ρα

(
δβαjl(kαr) − ih

(1)
l (kβr)

√
ρβ ρα Tβα

)

→ 1
2

√
ρβ

ρα

[
δβαh

(2)
l (kαr) + h

(1)
l (kβr)

(
δβα − 2i

√
ρβ ρα Tβα

)]
(10)

where again the index α stands for the incoming channel and β for the outgoing channel. The 
normalization used for the correlation functions in Ref. [9] can be recovered by multiplying the 
wave function in Eq. (10) (the part within the square brackets) with S† from the right, exploiting 
that the S matrix in Eq. (9) is unitary.

For arbitrary r the wave functions for the different channels are calculated from an equation 
analogous to Eq. (8),

ψ̃βα(r) = δβαjl(kαr)+ 1
π

∫
jl(qr) dqq2 1

E − E
β
1 (q) − E

β
2 (q) + iϵ

Tβα; l(q, kα;E) , (11)

Haidenbauer, Nuclear Physics A 981 (2019) 1–16 

•  Tl(q, k; E) φ

Comparison of model predictions and correlation data 
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How to extract interaction from Correlation data;    C(q) → ℱ(q)
R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

Hadron correlation in high energy nuclear collision

• Approximate  by asymptotic wave func.φ

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(2qR) −

Im ℱ(q)
R

F2(2qR)]

• Lednicky-Lyuboshitz (LL) formula

• Use effective range expansion for amplitude ℱ

φ(−)(q, r) r→∞ exp(−iq ⋅ r) +
ℱ(−q)

r
exp(−iqr)

(s-wave only)

ℱ(q) = [ 1
a0

+
re

2
q2 − iq]

−1

• Direct relation between  and   

• Difficult to introduce the detailed interaction e.g. coupled-channel 
• Coulomb int. can be only introduced with Gamow factor (too crude for )

C(q) ℱ(q)

C(q)

• Fit the data with formula
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 interaction and -dibaryon stateNΞ H

-  interaction ( ) and -dibaryonΛΛ NΞ S = − 2 H

• Flavor-singlet dihyperon “H”R. L. Jaffe, PRL 38 (1977), 195. 

• Binding energy of double  hypernucleusΛ

 does NOT form (deep) bound stateΛΛ
Takahashi et al., PRL87 (2001) 212502

pΞ−ΛΛ nΞ0

Re s

226022542231

8 ⊗ 8 = 1 ⊕ 8A ⊕ 8S ⊕ 10 ⊕ 1̄0 ⊕ 27
• : Unique sector in flavor Octet-Octet baryon int.J = 0

• Pauli arrowed  
• Attractive color-magnetic int. 

Predicted as “single hadron” below ΛΛ
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FIG. 1. s-wave coupled-channel HAL QCD potential. The colored shadow denotes the statistical error of each potential.

channel aJ=0
0 [fm] aJ=1

0 [fm]
pΞ− −1.21± 0.12+0.08

−0.00 − i1.52± 0.34+0.16
−0.25 −0.35± 0.06+0.09

−0.06 − i0.00± 0.00+0.00
−0.00

nΞ0 −2.53± 0.62+0.36
−0.46 − i0.74± 0.43+0.12

−0.21 −0.28± 0.04+0.02
−0.05

ΛΛ −0.76± 0.22+0.00
−0.14 -

TABLE I. The scattering length of the ΛΛ, nΞ0, and pΞ− channel at physical point with the physical basis. The Coulomb interaction is not
included. The values are listed as (central)± (stat. error)+−(syst. error). The error of ”0.00” denotes it is less than 5.0× 10−−3.

eigen-momenta of ΛΛ, nΞ0, and pΞ−, are +, −, and +, re-
spectively. The real part of this pole is just below the nΞ0

threshold by −3.93 MeV.3 Note that if the NΞ quasibound
state emerges, the pole must lie below nΞ0 threshold in the
(−,+,+) sheet, which is directly connected to physical scat-
tering energy. These near-threshold but in the irrelevant sheet
poles contribute to enhance the scattering length of the nΞ0

channel. Thus, considering the near-threshold virtual pole and
large absolute value of the nΞ0 scattering length, we can say
that the H dibaryon state is just barely unbound with the at-
tractive ΛΛ-NΞ interaction.4

3 See appendix for the relation between the attractive force and the virtual
pole position.

4 When the Coulomb potential is switched on, pΞ− atomic bound states
appear. The sizes of the atomic wave functions are much larger than the
source size, so the Coulomb attraction always contributes to enhance the
correlation function at small relative momenta in high-energy nuclear re-
actions.

III. CORRELATION FUNCTION FORMULA WITH
COUPLED-CHANNEL EFFECT

In high-energy heavy-ion collisions and high-multiplicity
events of pp and pA collisions, the hadron production yields
are well described by the statistical model so hadrons are con-
sidered to be produced independently. Under such conditions
the correlations between outgoing particles are generated by
the quantum mechanical scattering by the final state interac-
tion. We consider two particles, a and b, with relative mo-
mentum q = (mbpa − mapb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of cou-
pled channels, each denoted by j. In the pair rest frame of
the two measured particles, their correlation function C(q) is
given as [40, 46]:

C(q) =

∫
d3r

∑

j

ωjSj(r)|Ψ(−)
j (q; r)|2 , (1)

where the wave functionΨ(−)
j in the jth channel is written as

a function of the relative coordinate r in that channel, with
outgoing boundary condition for the measured channel. Sj(r)
and ωj are the normalized source function and its weight in the
jth channel. Thus the correlation function contains informa-
tion of both the hadron source and the hadron-hadron interac-

• HAL QCD  coupled-channel potentialΛΛ-NΞ
K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

• Strong attraction in   channel J = 0, I = 0 NΞ
apΞ−(J=0)

0 = − 1.21 − i1.52

 dibaryon state is just barely unbound.H

Fate of -dibaryon?H
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-  HAL QCD potentialΛΛ NΞ

  channelNΞ-ΛΛ J = 0
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FIG. 1. s-wave coupled-channel HAL QCD potential. The colored shadow denotes the statistical error of each potential.

channel a0 [fm] re [fm]
J = 0 p⌅� �1.22± 0.13+0.08

�0.00 � i1.57± 0.35+0.18
�0.23 3.7± 0.3+0.1

�0.1 � i2.7± 0.2+0.1
�0.3

n⌅0 �2.07± 0.39+0.28
�0.35 � i0.14± 0.08+0.00

�0.01 1.5± 0.3+0.0
�0.0 � i0.2± 0.0+0.0

�0.1

⇤⇤ �0.78± 0.22+0.00
�0.13 5.4± 0.8+0.1

�0.5

J = 1 p⌅� �0.35± 0.06+0.09
�0.07 � i0.00 8.3± 1.0+2.8

�1.2 + i0.0± 0.1+0.1
�0.0

n⌅0 �0.35± 0.06+0.09
�0.07 �8.4± 1.0+2.7

�1.2

TABLE I. The scattering length of the ⇤⇤, n⌅0, and p⌅� channels at physical point with the physical basis. The Coulomb interaction is not
included. The values are listed as (central)± (stat. error)+�(syst. error).

III. COUPLED-CHANNEL CORRELATION FUNCTION

In high-multiplicity events of pp and pA collisions and
high-energy AA collisions, the hadron production yields are
well described by the statistical model, so hadrons are consid-
ered to be produced independently. Under such conditions the
momentum correlations between outgoing particles are gen-
erated by the quantum mechanical scattering by the final state
interaction. We consider two particles, a and b, with relative
momentum q = (mbpa�mapb)/(ma+mb) observed in the
final state. Let this two-particle state be fed by a set of cou-
pled channels, each denoted by j. In the pair rest frame of
the two measured particles, their correlation function C(q) is
given by [45]

C(q) =

Z
d
3
r

X

j

!jSj(r)| (�)

j
(q; r)|2 , (2)

where the wave function  (�)

j
in the j-th channel is writ-

ten as a function of the relative coordinate r in that chan-
nel, with outgoing boundary condition for the measured chan-
nel. Sj(r) and !j are the normalized source function and its

weight in the j-th channel:
R
d
3
rSj(r) = 1 and !1 = 1,

where we label the observed measured channel as channel 1.
The latter normalization of the source weight follows from
the fact that the correlation function must be unity for any
momentum q in the non-interacting limit of Vij ! 0 [45].
Thus the correlation function contains information of both
the hadron source and the hadron-hadron interactions. We
call Eq. (2) Koonin–Pratt–Lednicky–Lyuboshits–Lyuboshits
(KPLLL) formula after the series of works [41–45].

There are essentially three theoretical ingredients for the
full use of the KPLLL formula to compare with the exper-
imental data. (i) the coupled channel wave functions with
threshold difference, (ii) Coulomb interaction and (iii) mod-
ern hadron-hadron interaction. Such a complete calculation
has been recently carried out for the first time for the K

�
p

correlation function in high-energy nuclear collisions by the
K̄N -⇡⌃-⇡⇤ coupled-channel framework [52]. In the subsec-
tions below, we show the formalism for such complete calcu-
lation applicable to the N⌅-⇤⇤ system.

• Nearly physical mass calculation
mK = 525 MeVmπ = 146 MeV

K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

2I+1,2s+1LJ

 HAL QCD potentialNΞ-ΛΛ

• Strong attraction for NΞ (I = 0)

• Weak attraction for  channelΛΛ

• Weak  couplingΛΛ-NΞ
• Solving Schrödinger eq.with physical masses

Scat. length : a0 ≡ − ℱ(Eth)
Virtual pole : -3.9-i0.3 MeV  (from  thr.)nΞ0

No  dibaryon stateH

• HAL QCD method Ishii, Aoki, Hatsuda, PRL99 (2007) 022001  
N. Ishii et al Phys. Lett. B712(2012)437

⟨0 |B1B2(t, ⃗r ) ⃗I(0) |0⟩
= A0Ψ( ⃗r, E0)e−E0t + ⋯

V(r)

Y. Kamiya, et al. PRC 105, 014915 (2022)
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Fig. 2. !–! correlations measured in pp collisions at √s = 13 TeV (left panel) and p–Pb collisions at √sNN = 5.02 TeV (right panel) together with the functions computed 
by the different models [20]. The tested potentials are converted to correlation functions using CATS and the baseline is refitted for each model. The effects of momentum 
resolution and residuals are included in the theory curves.

existing model predictions are summarized in [20] and the corre-
sponding potentials V (r) are parametrized in a local form using a 
double-Gaussian function. The correlation function depends on the 
nature of the underlying interaction and Fig. 2 shows the exper-
imental !–! correlations measured in pp collisions at 

√
s = 13

TeV (left panel) and p–Pb collisions at √
sNN = 5.02 TeV (right 

panel) together with the correlation functions obtained for differ-
ent meson-exchange interaction potentials employing CATS. Mod-
els with a strongly attractive interaction ( f −1

0 ! 1 and positive), 
like the Ehime [17] potential, result in a large enhancement of the 
correlation function at low momenta which overshoots the data 
significantly both in pp and p–Pb collisions. The same is valid for 
potentials corresponding to a shallow bound state ( f −1

0 → 0 and 
negative), e.g. NF44 [19].

The other tested potentials correspond either to a bound state 
or a shallow attractive ( f −1

0 " 1) non-binding interaction. However, 
those two very different scenarios result in similar correlations and 
are difficult to separate. This is evident from Fig. 2 as all of the 
ESC08 [48], HKMYY [22] and Nijmegen ND46 [18] models produce 
comparable results and are compatible with the experimental data, 
even though their scattering parameters are different. In particular, 
ND46 predicts a bound state, while the ESC08 and HKMYY models 
describe a shallow attractive potential and the latter is consistent 
with hypernuclei data [7,8].

The Lednický model can be used to compute C(k∗) for any f −1
0

and d0. Thus a scan over the scattering parameters can be pre-
formed and the agreement to the experimental data can be quan-
tified. The Lednický model breaks down for source sizes smaller 
than the effective range, especially when dealing with repulsive 
interactions [25], as it produces unphysical negative correlation 
functions. As there are no realistic models predicting such an in-
teraction, this study is not affected. Nevertheless, all models de-
scribed in [20] are explicitly tested by comparing the correlation 
functions obtained using the exact solution provided by CATS with 
the approximate solution evaluated using the Lednický model. The 
deviations are on the percent level and are neglected.

Another assumption, which the Lednický model is based on, is 
a Gaussian profile of the source. The EPOS [34] transport model 
predicts a non-Gaussian emission profile [35], and the effects of 
short lived resonances are included. This source was adopted in 
CATS, by tuning its width such as to describe the p–p correlation 
function, and the predicted C(k∗) for all of the ND and NF models, 
shown in Fig. 3, were compared to the !–! correlation function 
in pp collisions at 

√
s = 13 TeV. The deviations in χ2 compared to 

the case of a Gaussian source are within the uncertainty, justifying 
the use of a Gaussian source.

Fig. 3. Exclusion plot for the !–! scattering parameters obtained using the !–!

correlations from pp collisions at √s = 7 and 13 TeV as well as p–Pb collisions 
at √sNN = 5.02 TeV. The different colors represent the confidence level of exclud-
ing a set of parameters, given in nσ . The black hashed region is where the Lednický 
model produces an unphysical correlation. The two models denoted by colored stars 
are compatible with hypernuclei data, while the red cross corresponds to the pre-
liminary result of the lattice computation performed by the HAL QCD collaboration. 
For details regarding the region at slightly negative f −1

0 and d0 < 4, compatible 
with a bound state, refer to Fig. 4.

To quantify the uncertainties of f −1
0 and d0, and estimate the 

confidence level of each parameter set, a Monte Carlo method is 
used. In the current work the approach described in [49] is fol-
lowed, which is closely related to the Bootstrap method. The strat-
egy is to use the Lednický model to perform a scan over the pa-
rameter space spanned by f −1

0 ∈ [−2, 5] fm−1 and d0 ∈ [0, 18] fm 
and refit the !–! correlation using Eq. (5) when fixing the scat-
tering parameters to a specific value ( f −1

0 , d0)i . The corresponding 
χ2

i is evaluated by taking all data sets (pp at 
√

s = 7 and 13 TeV 
and p–Pb at √sNN = 5.02 TeV) into account. The different scatter-
ing parameters can be compared by finding the lowest (best) χ2

best
and evaluating $χ2

i = χ2
i − χ2

best for each parameter set. This ob-
servable, and the associated ( f −1

0 , d0)i , can be directly linked to 
the confidence level [49]. This can be achieved either by assum-
ing normally distributed uncertainties of ( f −1

0 , d0), or invoking a 
more sophisticated Monte Carlo study, like the Bootstrap method. 
The latter is used in the current analysis.

The resulting exclusion plot is presented in Fig. 3, where the 
color code corresponds to the confidence level nσ for a specific 
choice of scattering parameters. In the computation only the sta-
tistical uncertainties are taken into account, as the systematic un-
certainties are negligible according to the Barlow criterion [38]. 
The predicted scattering parameters of all discussed potentials are 

13
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the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (⊕) of particles and antiparticles (p Ξ p Ξ p Ξ– ⊕ ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– ⊕ ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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Fig. 3 | Experimental p–Ξ− and p–Ω− correlation functions. a, b, Measured  
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s = 13 TeV . The experimental data are shown as black symbols. The black 
vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.

Experimentally, the correlation function is computed
as Cðk"Þ ¼ N Aðk"Þ

Bðk"Þ, where k" ¼ 1
2 jp

"
1 − p"

2j is the reduced
relative momentum of two particles with momenta p"

1 and
p"
2 in the pair rest frame (p"

1 ¼ −p"
2), Aðk"Þ represents the

same event k" distribution, and Bðk"Þ is a corresponding
reference sample of uncorrelated pairs obtained by pairing
particles from different events [18]. The normalization
constant N between the two distributions is obtained in
the region k" ∈ ½240; 340& MeV=c, where final state
interaction effects are absent and the correlation func-
tion is flat. The theoretical correlation function Cðk"Þ ¼R
SðrÞjψk" ðrÞj2d3r in this Letter is computed with CATS

[22], where r is the relative distance between the two
particles, SðrÞ is the source function, and ψk"ðrÞ is the two-
particle wave function. A spherically symmetric emitting
source with a Gaussian density profile parametrized by a
radius parameter r0 is assumed and Coulomb and strong
potentials are considered to evaluate the relative wave
functions for p-p and p-Ξ− pairs.
The measured correlation functions for p-p and p-Ξ− are

shown in Fig. 1. The inset in the left panel shows an
enlargement of the p-p correlation function around
k" ¼ 100 MeV=c, where the effect of the repulsive inter-
action can be seen. A total number of 574 × 103 (412 × 103)
p-p (p̄-p̄) and 3.3 × 103 (2.6 × 103) p-Ξ− (p̄-Ξ̄þ) pairs
contribute to Aðk"Þ in the region k" < 200 MeV=c. The
systematic uncertainties for the p-p and p-Ξ− correlations
are obtained by varying all single-particle selection criteria
for protons and Ξ candidates with respect to their default
values such as to obtain a maximum variation of the single
particle yields of (15%. The resulting uncertainties on
the correlation functions are symmetrized and added in
quadrature.
In order not to be dominated by statistical fluctuations,

the systematic uncertainties are evaluated in intervals of

40 MeV=c width in k" for p-p and 200 MeV=c for p-Ξ−,
and fitted by a second order polynomial which serves to
interpolate the final point-by-point correlated uncertainties
in narrower intervals. The total systematic uncertainty
reaches a maximum value of 5% for p-p and 3.2% for
p-Ξ− at the lowest measured k" value.
The experimental data are fitted with the model corre-

lation function obtained from CATS, Cmodelðk"Þ. Together
with the genuine correlation function due to the two-
particle interaction, residual correlations are also consid-
ered. In the experiment the latter are introduced by
contamination of the selected samples due to particle
misidentification and feed-down from weak decays of
other particles. These are taken into account according to

Cmodelðk"Þ ¼ 1þ λgenuine½Cgenuineðk"Þ − 1&

þ
X

ij

λij½Cijðk"Þ − 1&; ð1Þ

where Cgenuineðk"Þ is the genuine correlation function for
the pairs of interest, i and j denote all possible impurity and
feed-down contributions, and Cijðk"Þ represent the corre-
sponding correlation functions. The parameters λij are the
relative weights of these contributions calculated from
purity and feed-down fractions [18] and are summarized
in Table I. Here X̃ denotes misidentified particles and XY
particles originating from the decay of Y. Both the p-p and
p-Ξ− correlation functions are dominated by the genuine
correlation of interest. The main contribution contaminat-
ing the p-p correlation function are protons from Λ or Σþ

weak decays. The genuine p-Ξ− signal is diluted with
contributions from secondary protons as mentioned above,
misidentified Ξs, or from decays of the Ξð1530Þ resonance.
For the feed-down contributions, the shape of the Cijðk"Þ
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Fig. 2. !–! correlations measured in pp collisions at √s = 13 TeV (left panel) and p–Pb collisions at √sNN = 5.02 TeV (right panel) together with the functions computed 
by the different models [20]. The tested potentials are converted to correlation functions using CATS and the baseline is refitted for each model. The effects of momentum 
resolution and residuals are included in the theory curves.

existing model predictions are summarized in [20] and the corre-
sponding potentials V (r) are parametrized in a local form using a 
double-Gaussian function. The correlation function depends on the 
nature of the underlying interaction and Fig. 2 shows the exper-
imental !–! correlations measured in pp collisions at 

√
s = 13

TeV (left panel) and p–Pb collisions at √
sNN = 5.02 TeV (right 

panel) together with the correlation functions obtained for differ-
ent meson-exchange interaction potentials employing CATS. Mod-
els with a strongly attractive interaction ( f −1

0 ! 1 and positive), 
like the Ehime [17] potential, result in a large enhancement of the 
correlation function at low momenta which overshoots the data 
significantly both in pp and p–Pb collisions. The same is valid for 
potentials corresponding to a shallow bound state ( f −1

0 → 0 and 
negative), e.g. NF44 [19].

The other tested potentials correspond either to a bound state 
or a shallow attractive ( f −1

0 " 1) non-binding interaction. However, 
those two very different scenarios result in similar correlations and 
are difficult to separate. This is evident from Fig. 2 as all of the 
ESC08 [48], HKMYY [22] and Nijmegen ND46 [18] models produce 
comparable results and are compatible with the experimental data, 
even though their scattering parameters are different. In particular, 
ND46 predicts a bound state, while the ESC08 and HKMYY models 
describe a shallow attractive potential and the latter is consistent 
with hypernuclei data [7,8].

The Lednický model can be used to compute C(k∗) for any f −1
0

and d0. Thus a scan over the scattering parameters can be pre-
formed and the agreement to the experimental data can be quan-
tified. The Lednický model breaks down for source sizes smaller 
than the effective range, especially when dealing with repulsive 
interactions [25], as it produces unphysical negative correlation 
functions. As there are no realistic models predicting such an in-
teraction, this study is not affected. Nevertheless, all models de-
scribed in [20] are explicitly tested by comparing the correlation 
functions obtained using the exact solution provided by CATS with 
the approximate solution evaluated using the Lednický model. The 
deviations are on the percent level and are neglected.

Another assumption, which the Lednický model is based on, is 
a Gaussian profile of the source. The EPOS [34] transport model 
predicts a non-Gaussian emission profile [35], and the effects of 
short lived resonances are included. This source was adopted in 
CATS, by tuning its width such as to describe the p–p correlation 
function, and the predicted C(k∗) for all of the ND and NF models, 
shown in Fig. 3, were compared to the !–! correlation function 
in pp collisions at 

√
s = 13 TeV. The deviations in χ2 compared to 

the case of a Gaussian source are within the uncertainty, justifying 
the use of a Gaussian source.

Fig. 3. Exclusion plot for the !–! scattering parameters obtained using the !–!

correlations from pp collisions at √s = 7 and 13 TeV as well as p–Pb collisions 
at √sNN = 5.02 TeV. The different colors represent the confidence level of exclud-
ing a set of parameters, given in nσ . The black hashed region is where the Lednický 
model produces an unphysical correlation. The two models denoted by colored stars 
are compatible with hypernuclei data, while the red cross corresponds to the pre-
liminary result of the lattice computation performed by the HAL QCD collaboration. 
For details regarding the region at slightly negative f −1

0 and d0 < 4, compatible 
with a bound state, refer to Fig. 4.

To quantify the uncertainties of f −1
0 and d0, and estimate the 

confidence level of each parameter set, a Monte Carlo method is 
used. In the current work the approach described in [49] is fol-
lowed, which is closely related to the Bootstrap method. The strat-
egy is to use the Lednický model to perform a scan over the pa-
rameter space spanned by f −1

0 ∈ [−2, 5] fm−1 and d0 ∈ [0, 18] fm 
and refit the !–! correlation using Eq. (5) when fixing the scat-
tering parameters to a specific value ( f −1

0 , d0)i . The corresponding 
χ2

i is evaluated by taking all data sets (pp at 
√

s = 7 and 13 TeV 
and p–Pb at √sNN = 5.02 TeV) into account. The different scatter-
ing parameters can be compared by finding the lowest (best) χ2

best
and evaluating $χ2

i = χ2
i − χ2

best for each parameter set. This ob-
servable, and the associated ( f −1

0 , d0)i , can be directly linked to 
the confidence level [49]. This can be achieved either by assum-
ing normally distributed uncertainties of ( f −1

0 , d0), or invoking a 
more sophisticated Monte Carlo study, like the Bootstrap method. 
The latter is used in the current analysis.

The resulting exclusion plot is presented in Fig. 3, where the 
color code corresponds to the confidence level nσ for a specific 
choice of scattering parameters. In the computation only the sta-
tistical uncertainties are taken into account, as the systematic un-
certainties are negligible according to the Barlow criterion [38]. 
The predicted scattering parameters of all discussed potentials are 
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the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (⊕) of particles and antiparticles (p Ξ p Ξ p Ξ– ⊕ ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– ⊕ ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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s = 13 TeV . The experimental data are shown as black symbols. The black 
vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.

Experimentally, the correlation function is computed
as Cðk"Þ ¼ N Aðk"Þ

Bðk"Þ, where k" ¼ 1
2 jp

"
1 − p"

2j is the reduced
relative momentum of two particles with momenta p"

1 and
p"
2 in the pair rest frame (p"

1 ¼ −p"
2), Aðk"Þ represents the

same event k" distribution, and Bðk"Þ is a corresponding
reference sample of uncorrelated pairs obtained by pairing
particles from different events [18]. The normalization
constant N between the two distributions is obtained in
the region k" ∈ ½240; 340& MeV=c, where final state
interaction effects are absent and the correlation func-
tion is flat. The theoretical correlation function Cðk"Þ ¼R
SðrÞjψk" ðrÞj2d3r in this Letter is computed with CATS

[22], where r is the relative distance between the two
particles, SðrÞ is the source function, and ψk"ðrÞ is the two-
particle wave function. A spherically symmetric emitting
source with a Gaussian density profile parametrized by a
radius parameter r0 is assumed and Coulomb and strong
potentials are considered to evaluate the relative wave
functions for p-p and p-Ξ− pairs.
The measured correlation functions for p-p and p-Ξ− are

shown in Fig. 1. The inset in the left panel shows an
enlargement of the p-p correlation function around
k" ¼ 100 MeV=c, where the effect of the repulsive inter-
action can be seen. A total number of 574 × 103 (412 × 103)
p-p (p̄-p̄) and 3.3 × 103 (2.6 × 103) p-Ξ− (p̄-Ξ̄þ) pairs
contribute to Aðk"Þ in the region k" < 200 MeV=c. The
systematic uncertainties for the p-p and p-Ξ− correlations
are obtained by varying all single-particle selection criteria
for protons and Ξ candidates with respect to their default
values such as to obtain a maximum variation of the single
particle yields of (15%. The resulting uncertainties on
the correlation functions are symmetrized and added in
quadrature.
In order not to be dominated by statistical fluctuations,

the systematic uncertainties are evaluated in intervals of

40 MeV=c width in k" for p-p and 200 MeV=c for p-Ξ−,
and fitted by a second order polynomial which serves to
interpolate the final point-by-point correlated uncertainties
in narrower intervals. The total systematic uncertainty
reaches a maximum value of 5% for p-p and 3.2% for
p-Ξ− at the lowest measured k" value.
The experimental data are fitted with the model corre-

lation function obtained from CATS, Cmodelðk"Þ. Together
with the genuine correlation function due to the two-
particle interaction, residual correlations are also consid-
ered. In the experiment the latter are introduced by
contamination of the selected samples due to particle
misidentification and feed-down from weak decays of
other particles. These are taken into account according to

Cmodelðk"Þ ¼ 1þ λgenuine½Cgenuineðk"Þ − 1&

þ
X

ij

λij½Cijðk"Þ − 1&; ð1Þ

where Cgenuineðk"Þ is the genuine correlation function for
the pairs of interest, i and j denote all possible impurity and
feed-down contributions, and Cijðk"Þ represent the corre-
sponding correlation functions. The parameters λij are the
relative weights of these contributions calculated from
purity and feed-down fractions [18] and are summarized
in Table I. Here X̃ denotes misidentified particles and XY
particles originating from the decay of Y. Both the p-p and
p-Ξ− correlation functions are dominated by the genuine
correlation of interest. The main contribution contaminat-
ing the p-p correlation function are protons from Λ or Σþ

weak decays. The genuine p-Ξ− signal is diluted with
contributions from secondary protons as mentioned above,
misidentified Ξs, or from decays of the Ξð1530Þ resonance.
For the feed-down contributions, the shape of the Cijðk"Þ
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is reasonable with larger source, because the coupled channel
wave function in the n⌅

0 channel decays as e
iqn⌅0r/qn⌅0r

outside of the interaction range and the n⌅
0 source effect is

suppressed at larger source size. The p⌅
� correlation func-

tion analysis from heavy-ion collisions is in progress [62], and
then the N⌅ from the HAL QCD will be examined further if
this behavior is found in the data from heavy-ion collisions.

There are two comments on the ⇤⇤ correlation function
in order. First, the The ⇤⇤ correlation function depends on
the source size significantly at small q, q < 100 MeV/c,
but the dependence is weak above the N⌅ threshold. Since
the quantum statistics is also important for ⇤⇤, we may need
to take account of the source shape and flow effects to seri-
ously discuss the ⇤⇤ correlation function from heavy-ion col-
lisions [7]. Second, in In the previous works [7, 37, 46], a
residual source having a small size, R ' 0.5 fm, was intro-
duced to explain the high-momentum tail of the ⇤⇤ correla-
tion function data from Au+Au collisions at RHIC [37]. In the
present coupled-channel results, by comparison, the slope of
the correlation function is discontinuous at the N⌅ thresholds,
and the high-momentum tail appearsexists as also found in
the STAR data [37]. While the N⌅ source does not contribute
much, it is important to solve the Schrödinger equation includ-
ing the coupled-channel effects in order to explain the cusp,
i.e. the jump of the slope of the correlation function at the N⌅

threshold2 and the high-momentum tail. In Ref. [63], it was
suggested that the coupled-channel effects may be the origin
of the high-momentum tail observed in the STAR data [37].
However, the tail appears only for small source (R < 1 fm)

2 One may find that the cusp structure on the fitted lines looks smaller than
those in Fig. 4. This is because the impurity factor � and source weight
factor !N⌅/!⇤⇤ weaken these cusps.
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as found in Fig. 9, and it will not appear in Au+Au collisions
where the source size is large. Hence we do not yet under-
stand the mechanism of producing the high momentum tail in
the ⇤⇤ correlation function data in [37].

For the pPb collisions, uncertainties in the calculated
results and data are so large that it would be premature to
draw some conclusions. (Compared to current cases, the R

for STAR AuAu collisions should be larger, so that the cc ef-
fect is smaller and the difference between purple and black
line should be smaller. Can we really state that the the high-
momentum tail in STAR data comes from the cc effect? YK
)
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but the dependence is weak above the N⌅ threshold. Since
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to take account of the source shape and flow effects to seri-
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the correlation function is discontinuous at the N⌅ thresholds,
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as found in Fig. 9, and it will not appear in Au+Au collisions
where the source size is large. Hence we do not yet under-
stand the mechanism of producing the high momentum tail in
the ⇤⇤ correlation function data in [37].

For the pPb collisions, uncertainties in the calculated
results and data are so large that it would be premature to
draw some conclusions. (Compared to current cases, the R

for STAR AuAu collisions should be larger, so that the cc ef-
fect is smaller and the difference between purple and black
line should be smaller. Can we really state that the the high-
momentum tail in STAR data comes from the cc effect? YK
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Femtoscopy for  systemsS = − 1

pΛ

ALICE Collaboration / Physics Letters B 805 (2020) 135419 5

Fig. 2. Measured correlation function of p–p ⊕ p–p . Statistical (bars) and systematic 
uncertainties (boxes) are shown separately. The width of the band corresponds to 
one standard deviation of the systematic uncertainty of the fit.

k∗ ∈ [0, 375] MeV/c to determine simultaneously the femtoscopic 
radius r0 and the parameters of the baseline. To assess the sys-
tematic uncertainties on r0 related to the fitting procedure the 
upper limit of the fit region is varied within k∗ ∈ [350, 400] MeV/c. 
The baseline is modeled as a polynomial of zeroth, first, and sec-
ond order. Additionally, as discussed above, all three models for 
the p–! residual correlation function are employed, and the in-
put to the λ parameters is modified by ±20% while maintaining 
a constant sum of the primary and secondary fractions. The p–p
correlation function is shown in Fig. 2, where the width of the 
bands corresponds to one standard deviation of the total system-
atic uncertainty of the fit. The inset shows a zoom of the p–p
correlation function at intermediate k∗ , where the effect of re-
pulsion becomes apparent. The femtoscopic fit yields a radius of 
r0 = 1.249 ± 0.008 (stat) +0.024

−0.021 (syst) fm.
Analyses of π–π and K–K correlation functions at ultrarelativis-

tic energies in elementary [56] and heavy-ion collisions [57] indi-
cate a source distribution significantly deviating from a Gaussian. 
Indeed, strongly decaying resonances are known to introduce sig-
nificant exponential tails to the source distribution, especially for 
π–π pairs [47–49]. This becomes evident when studying the cor-
responding resonance contributions obtained from the statistical 
hadronization model within the canonical approach [58]. The main 
resonances feeding to pions, ρ and ω, are significantly longer-lived 
than those feeding to protons (&) and '0 (!(1405)). Hence, it is 
not surprising that the source distribution for π–π deviates from 
a Gaussian. These conclusions are underlined when fitting the p–p
correlation function with a Lévy-stable source distribution [59,60]. 
Leaving both the femtoscopic radius and the stability parameter α
for the fit to determine, the Gaussian source shape (α = 2) is re-
covered. Employing a Cauchy-type source distribution (α = 1), the 
data cannot be satisfactorily described. Therefore, the premise of a 
Gaussian source holds for baryon–baryon pairs.

Accordingly, a Gaussian source with femtoscopic radius r0 is 
used to fit the p–'0 correlation function. The parameters of the 
linear baseline are obtained from a fit to the p–(!γ ) correlation 
function in k∗ ∈ [250, 600] MeV/c, where it is consistent and kine-
matically comparable with p–'0, however featuring significantly 
smaller uncertainties. The experimental p–'0 correlation function 
is then fitted in the range k∗ < 550 MeV/c, and varied during the 
fitting procedure within k∗ ∈ [500, 600] MeV/c to determine the 
systematic uncertainty. Additionally, the input to the λ parame-
ters is modified by ±20% while maintaining a constant sum of 
the primary and secondary fractions. The parameters of the base-

Fig. 3. Measured correlation function of p–'0 ⊕ p–'0. Statistical (bars) and system-
atic uncertainties (boxes) are shown separately. The gray band denotes the p–(!γ )

baseline. The data are compared with different theoretical models. The correspond-
ing correlation functions are computed using CATS [46] for χEFT [20], NSC97f [26]
and ESC16 [23], and using the Lednický–Lyuboshits approach [51,52] for fss2 [24]. 
The width of the bands corresponds to one standard deviation of the systematic 
uncertainty of the fit. The absolute correlated uncertainty due to the modeling of 
the p–(!γ ) baseline is shown separately as the hatched area at the bottom of the 
figure.

line are varied within 1σ of their uncertainties considering their 
correlation, including the case of a constant baseline. Finally, the 
femtoscopic radius is varied according to its uncertainties. Possible 
variations of the p–'0 source due to contributions of mT scaling 
and strong decays are incorporated by decreasing r0 by 15%, sim-
ilarly as in [28,29]. The corresponding resonance yields are taken 
from the statistical hadronization model within the canonical ap-
proach [58].

All correlation functions resulting from the above mentioned 
variations of the selection criteria are fitted during the procedure, 
additionally considering variations of the mass window to extract 
the p–(!γ ) baseline. The width of the bands in Fig. 3 corresponds 
to one standard deviation of the total systematic uncertainty of the 
fit. The absolute correlated uncertainty due to the modeling of the 
p–(!γ ) baseline correlation function is shown separately at the 
bottom of the figure.

4. Results

The experimental p–'0 ⊕ p–'0 correlation function is shown 
in Fig. 3. The k∗ value of the data points is chosen according to the 
⟨k∗⟩ of the same event distribution Nsame(k∗) in the correspond-
ing interval. Therefore, due to the low number of counts in the 
first bin, the data point is shifted with respect to the bin centre. 
Since the uncertainties of the data are sizable, a direct determina-
tion of scattering parameters via a femtoscopic fit is not feasible. 
Instead, the data are directly compared with the various models of 
the interaction. These include, on the one hand, meson-exchange 
models, such as fss2 [24] and two versions of soft-core Nijmegen 
models (ESC16 [23], NSC97f [61]), and on the other hand results of 
χEFT at Next-to-Leading Order (NLO) [20]. The correlation function 
is modeled using the Lednický–Lyuboshits approach [51] consider-
ing the couplings of the p–'0 system to p–! and n-'+ [52] with 
scattering parameters extracted from the fss2 model. For the case 
of ESC16, NSC97f and χEFT, the wave function of the p–'0 system, 
including the couplings, is used as an input to CATS to compute the 
correlation function. The degree of consistency of the data with the 
discussed models is expressed by the number of standard devia-
tions nσ , computed in the range k∗ < 150 MeV/c from the p-value 
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Fig. 1. Upper panels: p! correlation function (circles) with statistical (vertical bars) and systematic (grey boxes) uncertainties. Middle panels: zoom on the cusp-like signal 
at k∗ = 289 MeV/c. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit is performed using NLO13 (red) χEFT potentials with 
cut-off ! =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p$− ⊕ p$0 (pink) and p%0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of 
p%0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p%0 is modelled by χEFT (panel a) and 1.8 in case the p%0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass ⟨mT⟩ =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(⟨mT⟩) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-
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having a χ2 ≈ 16 for the considered 36 data points [3].
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 correlation function dΞ−

5

The CC equations (19) are integrated up to R = 10 fm. The
Coulomb interaction V C is taken to be

V C(R) =

⎧

⎪

⎨

⎪

⎩

−e2

2R0

(

3−
R2

R2
0

)

(R ≤ R0)

−e2

R
(R > R0)

, (38)

with R0 = 1.5 fm. The dependence of the numerical results
shown below on R0 is found to be negligibly small (less than
1%).

In the evaluation of the correlation function, the integration
overR is carried out up to Rmax = 10 fm and the maximumL
is taken to be a larger of K0Rmax and 5. The source function
S is assumed to have a Gaussian form

S(R) =
1

(4πb2)3/2
e−R2/(4b2). (39)

The source size b of the source function is taken to be 1.2 fm;
in Fig. 4, results with b = 1.6 and 3.0 fm are shown for com-
parison.

B. Correlation function
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CDCC
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1ch

Pure Coul

q (MeV/c)

C
d
Ξ

FIG. 1: d-Ξ− correlation function as a function of the relative mo-
mentum q. The solid, dashed, dotted, and dash-dotted lines represent
the result of CDCC, that with the 13S1 breakup states only, the result
of the single-channel calculation (without breakup states), and the
result with switching the strong interactions off, respectively. The
inset is an enlarged result for 30 MeV/c ≤ q ≤ 120 MeV/c.

We show in Fig. 1 CdΞ− as a function of q ≡ !cK0. The
inset is an enlarged figure in the region of 30 MeV/c ≤ q ≤
120 MeV/c. The solid (red) line represents the result calcu-
lated with the present framework of CDCC. The dotted (blue)
line is the result of the single-channel calculation, that is, only
the ground state of deuteron is considered. If we take only the
13S1 channels in NN into account, the dashed (green) line is
obtained. The dash-dotted (purple) line is the result obtained

with all the strong interactions turned off. For a simple no-
tation, below we designate the 13S1 (31S0) channel as the pn
(nn) channel.

The solid line shows a clear enhancement relative to the
dash-dotted line for q ≤ 100 MeV/c, which indicates that the
correlation due to the strong interaction can be deduced from
CdΞ− . The difference of the solid line from the dotted line
represents an increase in CdΞ− by the deuteron breakup effect,
which is about 6–8 % for 30 MeV/c ≤ q ≤ 70 MeV/c. At
larger q, the enhancement due to deuteron breakup decreases
monotonically and becomes less than 1% for q > 100MeV/c.
We discuss the deuteron breakup effect in more detail in
Sec. III E. The small difference between the dashed and dotted
line indicates that the nn breakup states are more significant
than the pn breakup states. This can be understood by the be-
havior of the CC potentials as discussed in Sec. III D. With a
closer look, a shoulder structure is found in the solid line at
around 60 MeV/c. This corresponds to the strong coupling
to low-lying nn breakup states located just below the scatter-
ing threshold; the channel energy Ec is negative and close to
0. We will return to this point soon below and in Sec. III E.
Compared with the net effect of the strong interaction (differ-
ence between the solid and dash-dotted lines), the deuteron
breakup effect is found to be not very significant. In other
words, including only the deuteron ground state in the calcu-
lation of CdΞ− will be useful except that it will miss a further
increase in the correlation function by several percent below
about 70 MeV/c.
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FIG. 2: Convergence of the d-Ξ correlation function regarding the
maximum bin-momentum kmax. The horizontal axis is the d-Ξ−

relative momentum. The solid, dashed, dotted, and dash-dotted lines
correspond to kmax = 0.2, 0.5, 1.0, and 2.0 fm−1, respectively.

Figure 2 displays the convergence of CdΞ− regarding kmax.
In all the calculations, we take the size ∆c of the momen-
tum bin to be 0.2 fm−1 (0.005 fm−1) for the pn (nn) con-
tinuum. The solid (red), dashed (green), dotted (blue), and
dash-dotted (purple) lines correspond to kmax = 0.2, 0.5, 1.0,
and 2.0 fm−1, respectively. The dash-dotted line is the same
as the solid line in Fig. 1. The result with kmax = 2.5 fm−1

Theoretical model for CdΞ−

Three body system of  d(np)Ξ

K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

• Three body problem :    
   continuum-discretized 
   coupled-channels method (CDCC) 
 
   ==>  relative wave function d-Ξ

N. Austern, M. Yahiro, and M. Kawai, PRL 63 2649(1989) 
N. Austern, M. Kawai, and M. Yahiro, PRC 53 314 (1996)

• Coupling effect by -   
   is estimated to be 6–8 % 

npΞ− nnΞ0

• Strong enhancement compared to  
   pure Coulomb case Ξ−

n
p

q

• Coupling between -  includednpΞ− nnΞ0

•  interaction : HAL QCD potentialNΞ Ξ−

n p

Discretize

R = 1.2 fm

Ξ0

n n

Coupling

K. Ogata, T. Fukui, Y. Kamiya, and A. Ohnishi,  
PRC103 (2021) 6, 065205



Correlation with few body systems

Talk slide from Raffaele Del Grande in HHIQCD 2024

laura.serksnyte@tum.de | femTUM2022

Femtoscopic technique: 3-body

3

p1

p2

p3

C (p1, p2, p3) ≡
P (p1, p2, p3)

P (p1) P (p2) P (p3)
= 𝒩

Nsame  (Q3)
Nmixed  (Q3)

C (k*) = 𝒩
Nsame  (k*)
Nmixed  (k*)

Q3 = −q2
ij − q2

jk − q2
ki qμ = (pi − pj)

μ
− (pi − pj) ⋅ P

P2 Pμ P ≡ pi + pj

Experimentally studying three-body correlations, the 
small statistics requires to project the correlation function 
on 1-dimensional observable .Q3

C(p1, p2, p3) = ∭ S3 (x1, x2, x3) ψp1,p2,p3 (x1, x2, x3)
2

d3x1d3x2d3x3

Equivalently to two-body correlation:

Three body correlation :

Extension to three-particle system

Raffaele Del Grande

ALICE Coll., EPJ A 59, 145 (2023)

p-p-p p-p-Λ

• First measurement of the free scattering of three hadrons
• Deviation from unity in p-p-p and p-p-Λ correlation functions

36

,  correlation ppp ppΛ



Correlation with few body systems

oton.vd@cern.ch pd and kd femtoscopy

Lednicky model vs ALICE data

22

         rK+d=1.41±0.04  fm                    rpd=1.08±0.06  fm
pd model calculations scaled by 1/15 

Kd data well reproduced 

 ⇒ fully formed deuterons 
present assuming small 
source

pd data not described

 ⇒ pd can’t be treated as 
effective two-body system

Considering protons, deuterons as 
distinguishable point-like particles 
leads to huge discrepancy

Talk slide from Oton Vazquez Doce’s  in FemTUM2022

Investigation of the three-body 
interactions of hadrons in pp 
collisions: p-p-p and p-p-Λ 
Laura Šerkšnytė, Raffaele Del Grande  
Technical University of Munich 
Based on: EPJC 82 2022 (TUM), arXiv:2206.03344 (ALICE)



Correlation with few body systems

Talk slide from Raffaele Del Grande in HHIQCD 2024

• Point-like particle models anchored to scattering 
experiments

• Coulomb + strong interaction using Lednický model
• Only s-wave interaction
• Source radius evaluated using the universal mT scaling

NNN using proton-deuteron correlations

Raffaele Del Grande 29

Point-like particle description doesn’t work for p-d

W. T. H. Van Oers et al., NPA 561 (1967); 
J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983);  
A. Kievsky et al., PLB 406 (1997);  T. C. Black et al., PLB 471 (1999);

Lednický, R. Phys. Part. Nuclei 40, 307–352 (2009)

ALICE Coll. Phys. Rev. X 14, 031051 (2024)

 correlation p-d



Correlation with few body systems

Talk slide from Raffaele Del Grande in HHIQCD 2024

NNN using proton-deuteron correlations

Raffaele Del Grande 11

M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

d

ALICE Coll. Phys. Rev. X 14, 031051 (2024)

• The p–d correlation function, assuming that p–p–n forms p–d

      where 𝑆1(𝑟) is a single-particle Gaussian source and 𝐴𝑑 is the
      formation probability of a deuteron

• The three-body wavefunction of the p–d System

Ψ𝑚2,𝑚1 𝑥, 𝑦 = Ψ𝑚2,𝑚1
𝑓𝑟𝑒𝑒 +

𝐿𝑆𝐽

𝐽≤ ҧ𝐽

4𝜋 𝑖𝐿 2𝐿 + 1 𝑒𝑖𝜎𝐿 1𝑚2
1
2𝑚1 𝑆𝐽𝑧 L0SJz JJz ෩Ψ𝐿𝑆𝐽𝐽𝑧

𝐶𝑝𝑑 𝑘 =
1
𝐴𝑑

1
6


𝑚1,𝑚2

∫ 𝑑3𝑟1𝑑3𝑟2𝑑3𝑟3𝑆1 𝑟1 𝑆1 𝑟2 𝑆1 𝑟3 Ψ𝑚1,𝑚2

2

Asymptotic solution Three-body dynamics

• Hadron-nuclei correlations at the LHC can 
be used to study many-body dynamics

 correlation p-d
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-  correlationY α(4He)

-  correlationY α

Further constraint on the  int? YN(YY )

αY
• Large binding energy of  

—> • Good description by two body treatment 

• -  potential: smeared potential range 
—> • Detailed potential shape may be investigated  

α

Y α

8
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FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.

 ALICE 
 Pb 5.02 TeV
pΞ−

p
ALICE PRL 123 (2019). 
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Fig. 1. Upper panels: p! correlation function (circles) with statistical (vertical bars) and systematic (grey boxes) uncertainties. Middle panels: zoom on the cusp-like signal 
at k∗ = 289 MeV/c. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit is performed using NLO13 (red) χEFT potentials with 
cut-off ! =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p$− ⊕ p$0 (pink) and p%0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of 
p%0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p%0 is modelled by χEFT (panel a) and 1.8 in case the p%0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass ⟨mT⟩ =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(⟨mT⟩) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-
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Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
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responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass ⟨mT⟩ =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(⟨mT⟩) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-
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Λ potential (U
Λ
) in SHF

Skyrme Hartree-Fock equation

Parameters in Empirical and Chiral EFT

Chi2mom Chi3mom LY-IV H.Λ2

a1 (MeV fm^3) -352.20 -388.30 -500.89 -302.72

a2 (MeV fm^5) 39.35 47.28 16.00 23.73

a3 (MeV fm^5) 52.18 36.56 20.00 29.84

a4 (MeV fm^4) -356.96 -405.68 480.54 581.04

a5 (MeV fm^5) 1000.80 1256.74 0.00 0.00

RMSD (MeV) 1.59 0.75 0.74 0.78

J%Λ (MeV) -33.45 -30.03 -29.78 -31.23

L%Λ (MeV) -23.55 9.32 -36.24 -46.10

K%Λ (MeV) 415.00 532.30 217.80 277.40

m'Λ(mΛ 0.73 0.70 0.87 0.82

5

FIG. 2. Normalized baryon density dependence of the single-particle
potentials for ⇤ in the symmetric nuclear matter. GKW2 and GKW3
represent the results of the ⇤ single-particle potential with only two-
body interactions and two- and three-body interactions obtained from
the �EFT [23], respectively. The solid and dashed lines represent
the fitting results to GKW2 and GKW3, respectively. The dotted
and dash-dotted lines correspond to the ⇤ potentials, LY-IV [49] and
HP⇤2 [50], respectively.

of 13
⇤ C, 11.88 MeV. The experimental value is taken from

Ref. [65] with a correction of 0.5 MeV, which is pointed out
in Ref. [66]. There are two reasons for choosing 13

⇤ C: First,
it has a larger surface-energy effect compared with a heavier
nucleus. Second, the spherical Skyrme-Hartree-Fock method
is expected to provide a relatively good description of 13

⇤ C
because it has even numbers of protons and neutrons.

TABLE I. Sets of Skyrme potential parameters. Chi2 and Chi3 are
the fitting results to the �EFT calculations [23, 34]. LY-IV [49] and
HP⇤2 [50] are the ⇤ potentials, which can explain the ⇤ binding en-
ergy data. The symbol �B⇤ represents the mean squared deviation
of the calculated ⇤ binding energy from the experimental data as de-
fined by Eq. (29).

Chi2 Chi3 LY-IV HP⇤2
t⇤0 (MeV fm3

) �352.2 �388.3 �542.5 �399.9

t⇤1 (MeV fm5
) 143.7 120.4 56.0 83.4

t⇤2 (MeV fm5
) 13.7 68.7 8.0 11.5

t⇤3,1 (MeV fm4
) �951.9 �1081.8 1387.9 2046.8

t⇤3,2 (MeV fm5
) 2669 3351 0 0

x⇤
0 0 0 �0.153 �0.486

x⇤
3,1 0 0 0.107 �0.660

x⇤
3,2 0 0 0 0

J⇤ (MeV) �33.5 �30.0 �29.8 �31.2

L⇤ (MeV) �23.5 9.3 �36.2 �46.1

K⇤ (MeV) 415 532 218 277

m⇤
⇤/m⇤ 0.73 0.70 0.87 0.82

�B⇤ (MeV) 1.55 0.72 0.71 0.78

We show in Table I the Taylor coefficients and the normal-

ized effective mass at ⇢0, which characterize the ⇤ potential:

J⇤ = U⇤(⇢N = ⇢0, k⇤ = 0), (25)

L⇤ = 3⇢N
@U⇤

@⇢N

���
⇢N=⇢0,k⇤=0

, (26)

K⇤ = 9⇢2N
@
2
U⇤

@⇢
2
N

���
⇢N=⇢0,k⇤=0

, (27)

m
⇤
⇤

m⇤

���
⇢N=⇢0

=
1

1 +
2m⇤

~2 a
⇤
2 ⇢0

. (28)

C. ⇤ single-particle potential and ⇤ binding energy

We now present the results of the Skyrme-Hartree-Fock cal-
culations for ⇤ hypernuclei using the ⇤ Skyrme interaction
discussed in the previous section.

Figure 3 shows the ⇤ single-particle potential (18) for hy-
pernucleus 208

⇤ Pb. At a distance r < 4 fm where the nucleon
density ⇢N is close to the saturation density ⇢0, both Chi3 and
LY-IV have the potential depth of �30 MeV while Chi2 has a
slightly greater depth of �33 MeV. Those values reflect J⇤,
the ⇤-potential depth at ⇢0 (see Table I).

FIG. 3. ⇤ single-particle potential (18) for hypernucleus 208
⇤ Pb in

the coordinate space. The dashed and solid lines show the results
from the ⇤ potential Chi2 and Chi3, respectively. The dotted line
corresponds to the result from the LY-IV parameter sets.

Figure 4 compares the ⇤ binding energies calculated from
different ⇤ potentials at mass number A = 13–208 in 1s, 1p,
1d, 1f , and 1g orbitals. The experimental data at A = 16–
208 are listed in Table III. Chi3, which includes the ⇤NN

three-body force, reproduces the data. This implies that the
strong repulsive ⇤ potential, which is sufficient to suppress
the presence of ⇤ hyperons in dense nuclear matter, is con-
sistent with the observed ⇤ hypernuclear data. On the other
hand, Chi2, which includes only the ⇤N two-body force, pre-
dicts the overbinding of the data in the 1s orbital. This is be-
cause J⇤ is as deep as approximately �33 MeV for Chi2. We

•  potential model with different density dependenceNΛ
D. E. Lanskoy and Y. Yamamoto, PRC 55, 2330 (1997)

• LY-IV

N. Guleria, S. K. Dhiman, and R. Shyam, Nucl. Phys. A 886, 71 (2012)

• HP 2 Λ

• Well reproduces the binding energy of  in hypernuclei  Λ

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC 110 (2024), 014001

Weaker desnity dependence 
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• high central density ~ 2ρ0
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aΛ
3

5
ΛHe EB = 3.12 MeV

ρ(r) = A(2νc /π)3/2e−2νcr2
• Nucleon density with Gaussian form: 

4

FIG. 1. ⇤↵ potentials as functions of the distance between ⇤ and
↵. Isle (dashed line) and SG (thick dash-dotted line) are the phe-
nomenological potentials given in Gaussian form [37]. Chi3 (solid
line), LY-IV (dotted line), and Chi3 w/o mom (thin dash-dotted line)
are the Skyrme-type ⇤ potentials with the ↵ density distribution.

LY-IV exhibits the Woods-Saxon like shape. This is a con-
sequence of the different high-density behavior of the ⇤ po-
tential in nuclear matter mentioned above. In this way, we
explicitly show that the property of ⇤ in nuclear matter is re-
flected in the short-range behavior of the ⇤↵ potential. The
Isle potential has a further strong repulsive core at a short dis-
tance, while the SG model is entirely attractive. In all cases,
the interaction ranges are of the order of 2-3 fm.

The two-body Schrödinger equation for the ⇤↵ system is
written as

"
�r⇤ ·

✓
1

2m⇤
⇤(r)

r⇤

◆
�

1

2m↵
r

2
↵

+ U⇤↵(r)

#
�(r⇤, r↵) = E�(r⇤, r↵), (13)

where ri is the coordinate of the particle i. The derivative
operator ri is acting on the particle i and the relative coordi-
nate is defined as r = r↵ � r⇤. The effective mass m⇤

⇤(r)
of ⇤ is set as its vacuum value m⇤ for local potentials: Isle,
SG, and Chi3 w/o mom. In the center-of-mass frame, the total
momentum is zero, and then rR� = 0 with the center-of-
mass coordinate R = (m↵r↵+m⇤r⇤)/(m↵+m⇤), and the
Schrödinger equation (13) can be reduced to the equation for
the relative wave function  as

�rr ·

✓
1

2µ⇤(r)
rr

◆
+ U⇤↵(r)

�
 (r) = E (r), (14)

where we call µ⇤
= m⇤

⇤m↵/(m⇤
⇤ + m↵) the reduced effec-

tive mass. In Fig. 2, the r dependence of µ⇤ for different
models is shown. The reduced effective mass is a constant
µ = m⇤m↵/(m⇤ + m↵) for local potentials, Isle, SG, and
Chi3 w/o mom. For nonlocal potentials, the reduced effective
mass decreases from µ in the distance where the nucleon den-
sity appears, and Chi3 shows stronger reduction than that of

FIG. 2. Reduced effective masses as functions of the distance be-
tween ⇤ and ↵ for Chi3 (solid line) and LY-IV (dotted line). Its
vacuum value µ corresponds to the dashed line.

LY-IV. The reduction of µ⇤ is a consequence of positive a⇤2
[see Eq. (3)], which is enhanced for the model with larger a⇤2 .

In Fig. 3, normalized ⇤↵ phase shifts �/⇡ calculated with
various potential models are shown as functions of the magni-
tude of the relative momentum q =

p
2µE.1 The behavior of

the low-energy phase shift is constrained by the bound state
5
⇤He below the threshold. The ⇤ binding energy of 5

⇤He is
listed in Table III. The results are similar since all models are
constructed to reproduce the experimental value. The scatter-
ing length a0 and the effective length re↵ are defined with the
effective-range expansion parameters as

q cot � = �
1

a0
+

1

2
re↵q

2
+O

�
q4
�
. (15)

Obtained values are listed in Table III. We note that the order-
ing of the magnitude of a0 and re↵ coincides with the order-
ing of the value of the potential U⇤↵ at r = 0, except for Chi3
w/o mom. To check the convergence of the effective-range
expansion, we evaluate the binding energy estimated by the
truncated effective-range expansion [70],

BERE
⇤ = �

1

2µ

✓
i

re↵
�

1

re↵

r
2re↵
a0

� 1

◆2

, (16)

in Table III. It is seen that the exact binding energy B⇤ is
reasonably estimated by BERE

⇤ , indicating the good conver-
gence of the effective-range expansion. At the same time,
however, the deviation of B⇤ and BERE

⇤ increases for mod-
els with larger re↵ .

1 To determine the momentum, we use the reduced mass µ also for the non-
local potentials, because the scattering momentum is defined in the asymp-
totic region r ! 1 where µ⇤ ! µ.

Large difference in  
strength of repulsive core

Simple potential models
Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345 (1995) 

• Isle potential 

V(r) = V1e−r2/b2
1 + V2e−r2/b2

2

repulsive core 
(short range)

attractive part 
(long range)

• Single Gaussian (Isle)
V(r) = Ve−r2/b2

• parameters are chosen to reproduce EB

VΛα
• Potential shape dependence of ?CΛα

Isle > Chi3 > LY-IV> SG (No core)

• Strength of repulsive core

• Difference of  dependence of Skyrme pot. 
appear in the strength of repulsive core.

ρ



Source size dependence of CΛα

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC 110 (2024), 014001

• Dip for small source 

• Suppression for large source 

Effect of repulsive core

R = 1 fm

R = 3 fm

R = 5 fm
• Characteristic lineshapes for weak binding system ( )5

ΛHe

•  are ordered from bottom to top as C(q)

—> Stronger core causes Stronger suppression 

Strength of the repulsive core can be tested with 
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LY-IV

Chi3

 correlationΛα
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FIG. 4. ⇤↵ correlation functions for three different source sizes. The solid and dotted lines show the result calculated by the Skyrme-type ⇤↵
potentials, Chi3 and LY-IV, respectively. The dashed and dash-dotted lines are the results from the phenomenological ⇤↵ potentials, Isle and
SG, respectively.

is valid if R is much larger than the interaction range, as men-
tioned above.

To see the dependence on the momentum-dependent part
of the Skyrme-type potential, we compare the ⇤↵ correlation
functions calculated by using Chi3 with those by Chi3 w/o
mom in Fig. 6. For a source size of R = 1 fm, the corre-
lation functions show tiny but nonnegligible deviation, origi-
nated from the momentum dependence of the potential. From
Fig. 2, the momentum dependence of the potential induces
a sizable difference in the reduced effective mass of the ⇤↵
system. Nevertheless, its influence in the correlation function
is quantitatively small, presumably because of the subsequent
adjustment of the a⇤3 parameter to reproduce the ⇤ binding
energy of 5

⇤He. For R � 3 fm, the differences in the cor-
relation function are not noticeable. For such larger source
sizes, the LL formula works well, as seen above. Then, the
similarity between the correlation functions represents that the
differences in a0 and re↵ are not large enough to exhibit the
difference in the correlation functions.

IV. SUMMARY

In this paper, we extend the femtoscopy technique to the
system including light nuclei, and we provide quantitative pre-
dictions of the ⇤↵ momentum correlation functions that can
be measured in high-energy collisions. We have examined five
models of ⇤↵ potentials. Two of them are phenomenological
⇤↵ models (Isle and SG) [37]. The others are constructed by
substituting the ↵ density distribution for the Skyrme-type ⇤

potentials [58, 59]. All models reproduce the ⇤ binding en-
ergy of 5

⇤He and have a consistent interaction range of 2-3 fm,
while they have different properties at short range, includ-
ing both attractive ones and repulsive ones. The constructed
Skyrme-type potentials indicate that the repulsive nature of
the ⇤ potential at high densities induces the repulsive core in
the ⇤↵ interaction at short range.

While the correlation functions from the source with R & 3

fm are not sensitive to the short-range behavior of the ⇤↵ po-
tential, the difference of the potentials is manifest in the cor-
relation functions from the small-source system (R ⇠ 1 fm).

It is found that the correlation is suppressed in the order of
the repulsive strength of the ⇤↵ potential at short range. This
indicates that the ⇤↵ correlation function can constrain the
⇤↵ potential at short range, which cannot be explored in the
few-body ⇤ hypernuclear system because the variation in its
short range part does not make a difference in the calculated
⇤ binding energy [31]. Detailed knowledge of the ⇤↵ poten-
tial at short range would provide valuable information on the
property of ⇤ in dense nuclear medium, which is one of the
key ingredients needed to solve the hyperon puzzle of neutron
stars.

We examine the validity of the LL formula, which has been
utilized to extract the low-energy scattering parameters from
the correlation function measurements. For a small source
size of 1 fm, the LL formula is shown to severely deviate from
the exact result in the low-momentum region, since the system
with longer interaction range than the source size invalidates
the assumption made in the LL formula. We also study the
effect of the momentum dependence of the ⇤ potential, which
is not so firmly determined from the experimental data. We
compare the momentum dependent model with the one omit-
ting the momentum dependence of the ⇤ potential in symmet-
ric nuclear matter while fixing the ⇤ binding energy of 5

⇤He.
The difference between with and without the momentum de-
pendence is found to be small.

Since the source size of 1 fm is smaller than the rms radii of
↵, the feasibility of treating ↵ as a point-like particle should be
discussed. In the coalescence model picture, the yield of the
composite particle is represented as the product of the single-
particle yields and their correlation, and then the source func-
tion of the composite particle can be regarded as the effective
Gaussian source function [75–78]. A more rigorous treatment
for treating the ↵ particle as a composite particle is to calcu-
late the five-body scattering problem of ⇤+2n+2p ! ⇤+↵.
However, performing such calculations is beyond the scope of
this paper and is left as a future work.

We have demonstrated that the study of the two-body corre-
lation functions including ↵ could serve as a new tool to study
the property of the hyperons in nuclear medium. The exper-
imental measurement of the ⇤↵ correlation function may be
feasible at the collision energy

p
sNN < 10 GeV in which a

• Potential difference appear only in small source results

Large source results are useful to check  of EB
5
ΛHe

Isle -> Chi3 -> LY-IV -> SG (No core)
Same ordering with the strength of repulsive core R = 1 fm
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FIG. 2. The s-wave coupled-channels HAL QCD potential for three temporal distances, t = 11, 12, and 13 at almost physical quark masses
[12]. The colored shadow denotes the statistical error of each potential.

left panel), (ii) a weak mixing between N! and "" (the upper
right panel) at low energy, and (iii) a weak attraction in the
"" channel (the upper middle panel).

As low energy constants characterizing the strong interac-
tion, we calculate the scattering length a0 and the effective
range reff in the s-wave by solving the Schrödinger equa-
tion with the HAL QCD potential in Fig. 2 without the
Coulomb interaction. Here we take the nuclear and atomic
physics convention, where the s-wave phase shift at low en-
ergies is given by

q cot δ0(q) = − 1
a0

+ 1
2

reffq2 + · · · , (1)

with q being the relative momentum. Table I summarizes
the results where the central values of a0 and reff are ob-
tained from t = 12 with the statistical errors evaluated by the
jackknife method and the systematic errors estimated from
t = 11 and 13. Unlike the procedure in Ref. [12] where baryon
masses measured on the lattice are used in the kinetic part
of the Schrödinger equation, we use the experimental baryon
masses of p, n,",!−, and !0.1

Note that a0 in ""(J = 0) and n!0(J = 1) channels in
Table I are strictly real since there are no two-baryon states
below, while those in p!−(J = 0) and n!0(J = 0) channels
are complex due to the coupling to the lower "" channel.

1In Appendix A, we show the results of a0 and reff with the experi-
mental baryon masses in the kinetic term and a modified HAL QCD
potential in which mπ ,K in the fitted potential are replaced by the
isospin-averaged experimental values of the pion and kaon masses.
The results in this procedure are consistent with those of Table I
within statistical and systematic errors.

Also, a0 in the p!−(J = 1) channel is complex in principle
due to the coupling to the lower n!0(J = 1) channel.

Solving the Schrödinger equation, we find that neither
bound H dibaryon below the "" threshold nor a quasibound
state below the N! threshold are allowed with the HAL
QCD potential, although the interactions in both channels
are attractive. Also, the large |a0| in the n!0(J = 0) channel
indicates that this system is close to the unitary regime. In fact,
there appears a virtual pole in the complex energy plane (see
Appendix B). The imaginary part of a0 in the p!− (J = 1)
channel is essentially zero, which implies that the transition
between p!− to n!0 is very weak: This is partly due to the
fact that the N! potential in I = 0 (the lower middle panel of
Fig. 2) and that in I = 1 (the lower right panel of Fig. 2) are
very close to each other.

III. COUPLED-CHANNELS CORRELATION FUNCTION
WITH COULOMB INTERACTION

In high-multiplicity events of pp and pA collisions as well
as in high-energy AA collisions, the hadron production yields
are well described by the statistical model, which implies
that the hadrons are produced independently. In such a situ-
ation, the momentum correlations between outgoing particles
are generated by the quantum statistics and the final state
interactions. Consider two particles, a and b, with relative
momentum q = (mb pa − ma pb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of coupled
channels, each denoted by j. In the pair rest frame of the two
measured particles, their correlation function C(q) is given by
[34]

C(q) =
∫

d3r
∑

j

ω jS j (r)|& (−)
j (q; r)|2, (2)
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FIG. 2. The s-wave coupled-channels HAL QCD potential for three temporal distances, t = 11, 12, and 13 at almost physical quark masses
[12]. The colored shadow denotes the statistical error of each potential.
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are complex due to the coupling to the lower "" channel.

1In Appendix A, we show the results of a0 and reff with the experi-
mental baryon masses in the kinetic term and a modified HAL QCD
potential in which mπ ,K in the fitted potential are replaced by the
isospin-averaged experimental values of the pion and kaon masses.
The results in this procedure are consistent with those of Table I
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Also, a0 in the p!−(J = 1) channel is complex in principle
due to the coupling to the lower n!0(J = 1) channel.

Solving the Schrödinger equation, we find that neither
bound H dibaryon below the "" threshold nor a quasibound
state below the N! threshold are allowed with the HAL
QCD potential, although the interactions in both channels
are attractive. Also, the large |a0| in the n!0(J = 0) channel
indicates that this system is close to the unitary regime. In fact,
there appears a virtual pole in the complex energy plane (see
Appendix B). The imaginary part of a0 in the p!− (J = 1)
channel is essentially zero, which implies that the transition
between p!− to n!0 is very weak: This is partly due to the
fact that the N! potential in I = 0 (the lower middle panel of
Fig. 2) and that in I = 1 (the lower right panel of Fig. 2) are
very close to each other.

III. COUPLED-CHANNELS CORRELATION FUNCTION
WITH COULOMB INTERACTION

In high-multiplicity events of pp and pA collisions as well
as in high-energy AA collisions, the hadron production yields
are well described by the statistical model, which implies
that the hadrons are produced independently. In such a situ-
ation, the momentum correlations between outgoing particles
are generated by the quantum statistics and the final state
interactions. Consider two particles, a and b, with relative
momentum q = (mb pa − ma pb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of coupled
channels, each denoted by j. In the pair rest frame of the two
measured particles, their correlation function C(q) is given by
[34]

C(q) =
∫

d3r
∑

j

ω jS j (r)|& (−)
j (q; r)|2, (2)
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FIG. 2. The s-wave coupled-channels HAL QCD potential for three temporal distances, t = 11, 12, and 13 at almost physical quark masses
[12]. The colored shadow denotes the statistical error of each potential.
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"" channel (the upper middle panel).
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I. INTRODUCTION

to be added...

II. FORMALISM

　
In this study, we employ the αΞ folding potential in

Ref. [1], which is obtained with the HAL QCD NΞ poten-
tial [2] This folding potential is given with the sum of the
Gaussian as

VαΞ(r) =
∑

i=1,20

Vi exp(−νir
2), (1)

where Vi is the potential strength and νi is the Gaussian range.
Because the isospin-spin ave averaged NΞ potential is given
as

Vave =
1

16

[
V (11S0) + V (11S0) + V (11S0) + 9V (33S1)

]
,

(2)

33S1 component is dominant in VαΞ. The potential shape
is shown in Fig. II. Due to the finite volume of α particle,
both the central repulsion and the attractive range are smeared
compared to the NΞ interaction. This interaction is attractive
but is not enough strong to support a bound state. Thus the
αΞ0 system, where only the strong interaction works, does
not have a bound state. The scattering length a0 and the effec-
tive range re are summarized in Table II. Note that we employ
the nuclear physics convention for the scattering length where
a0 > 0(< 0) for the repulsive interaction and the strongly
attractive interaction with a bound state (weak attractive inter-
action without supporting a bound state). The value of a0 is
sizable large which implies that the system is very close to the
unitary limit [3]. It can be understood that large re is due to
the smeared potential (1) has the long range.

On the other hand, for the αΞ− system, the further attrac-
tion by the Coulomb interaction works as

VCoulomb(r) =
Z1Z2α

r
(3)

with charge of particle i Zi and fine structure constant α. By
solving the Schrödinger equation with V = VαΞ + VCoulomb,
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FIG. 1. αΞ folding potential.

we find a Coulomb assisted shallow bound state with the bind-
ing energy B = 0.45 MeV. Note that this is not a Coulomb
bound state, which emerge for every Coulomb attractive pair
with keV order binding energy.

In the study of Ref. [4], the αΞ bound state with B =
2.16 MeV is found using chiral NLO NΞ amplitude. It is
not straight forward to construct a coordinate space potential
based on the Chiral NLO amplitude [4]. Instead, by multiply-
ing two to the VαΞ, we reproduce the binding energy of 2.16
MeV [1]. On the other hand, by using VαΞ/2, we can con-
sider the case where αΞ system does not have any bound state
for either charged or neutral system. Thus, in the following,
we consider the two additional potentials Vstrong = 2VαΞ and
Vweak = VαΞ/2 for the the deeply bound case and the un-
bound case, respectively. The scattering lengths and effective
ranges for the additional cases are shown in Table II.

The momentum correlation function in the high energy nu-
clear collisions is given by the Koonin-Pratt formula [5, 6];

C(q) =

∫
d3rS(r)

∣∣∣Ψ(−)(q; r)
∣∣∣
2
, (4)

where q is the relative momentum in the pair rest frame,
S(r) is the normalized source function, and Ψ(−)(q; r) is
the relative wave function with out going boundary condi-
tion. In this study, we employ the static Gaussian SR(r) ≡

r [fm]

• Folding  potential Ξα

[V(11S0) + 3V(13S1)
3V(31S0) + 9V(33S1)]/16

 correlationΞα

4 components  for  -wave :  s 11S0, 13S1, 31S0, 33S1
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CpΞ−
∼ [C(11S0) + 3C(13S1)

C(31S0) + 3C(33S1)]/8

• Large enhancement from  11S0

•  correlationpΞ−

• Large weight of 11S0
• Repulsive core  
• Long tail attraction by  exchange π
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Predictions for  bound state: Ξα 5
ΞH
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 correlationΞα

potential EB (Ξ0α） [MeV] EB (Ξ-α）[MeV] 
VHAL (Unbound) 0.47

Vstrong = 2 *VHAL 1.15 2.16
Vweak =  VHAL /2 (Unbound) 0.18

Folding potential and variations
• : Folding potential based on  HAL QCD potential VHAL S = − 2

E. Hiyama, M. Isaka, T. Doi, and T. Hatsuda, PRC 106, 064318 (2022). 
K. Sasaki et al., NPA, 121737 (2019). 

H. Le, et al EPJA (2021)  

• Coulomb assisted bound state <— HAL QCD pot. 

 
 MeV EB = 0.47

 MeV EB = 2.16 • Behavior for Coulomb assisted  
bound state? 

• Can we distinguish  with ? 5
ΞH CΞ−α

E. Hiyama, et al PRC 106, 064318 (2022).
K. Sasaki et al., NPA, 121737 (2019). 

• Deeper bound state  <— chiral effective SU(3) pot.

α
Ξ−

α
Ξ0

α
Ξ−

α
Ξ0

• Bound state found only for Coulomb attractive pair

Large difference comes from 33S1
H. Le, et al EPJA (2021)  
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 correlationΞα

• Dip in  for  and  
                   • Suppression by repulsive core? 

q ∼ 100 MeV/c VHAL Vweak

• Source size dependence can 

•  Effect of detailed potential shape?

 correlationΞ0α
potential EB [MeV]

VHAL (Unbound)
Vstrong 1.15
Vweak (Unbound)

• , : strong enhancement  
                         • consistent with No 
VHAL Vweak

5
ΞH

• : Typical source size dependence with bound state 
              • Suppression for large  
              • Enhancement and dip for for small 

Vstrong
R

R

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, 2409.13207
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Detailed potential dependence 

 correlationΞα

Vweak
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F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(2qR) −

Im ℱ(q)
R

F2(2qR)]

R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).
• Lednicky-Lyuboshitz (LL) formula

• Compare the folding potential results with simpler models

• Purely attractive Gaussian potential

4

C⌅↵ with Vstrong shows qualitatively different behavior from
those with VHAL and Vweak. This is attributed to the existence
of the bound state by Vstrong. In addition, the very strong en-
hancement of the correlation with VHAL at small momentum
reflects the significantly large scattering length |a0| > 500 fm.
As a consequence, three different potential models adopted
here can be distinguishable by the measurement of the ⌅

0
↵

correlation function, in particular for the large source R = 3-
5 fm. We find that the result with Vstrong shows the suppres-
sion or bump structure depending on the source size R. This
is a typical feature of C(q) for the attractive interaction with a
bound state. On the other hand, the correlation functions with
VHAL and Vweak show the enhancement in the low momen-
tum region characteristic for an attractive interaction without
a bound state, but a dip structure in the intermediate momen-
tum region (q ⇠ 200 MeV/c) is found. The dip structure is
more prominent in C(q) with a small source, R = 1 fm. Be-
cause such dip structure is not seen in the model calculation
with simple attraction [48], this should be related to the de-
tailed shape of the ⌅↵ potential.

To see the effect of the shape of the ⌅↵ folding potential, we
introduce the purely attractive one range Gaussian potential
given as

VGaussian(r) = V0 exp(�r
2
/b

2
), (6)

with the potential strength V0 and the range parameter b. We
construct the Gaussian potentials by choosing the range pa-
rameter as b = 3 fm and tuning V0 to reproduce the scattering
length a0 in Table I for each potential. We have checked that
the qualitative conclusions given below remain unchanged un-
der the variation of the value of b. The correlation functions
by the Gaussian potentials with R = 1 fm are compared with
the results from the original folding potentials VHAL, Vstrong,
and Vweak in Fig. 4. We find that the Gaussian potentials qual-
itatively reproduces the results of the original folding poten-
tials, while the correlation in the small momentum region is
somehow overestimated. In particular, the Gaussian potentials
corresponding to VHAL and Vweak without a bound state pro-
vide the enhancement of the correlation without a dip in the
intermediate momentum region, as expected. In other words,
the folding potentials with a repulsive core gives the suppres-
sion of the correlation functions in this region, causing a dip
structure. Thus, we conclude that the characteristic suppres-
sion found in the ⌅

0
↵ correlation with R = 1 fm in the in-

termediate momentum region is caused by the repulsive core
of the folding potential. This means that the correlation func-
tion from the small source may be useful to investigate the
existence and its strength of the repulsive core of the N⌅ in-
teraction.

To further discuss the effect of the potential shape to the
correlation, we evaluate the correlation functions with the
Lednicky-Lyuboshits (LL) formula [44, 49]

CLL(q) =1 +
|f(q)|2

2R2
F3

⇣
re↵

R

⌘

+
2Ref(q)p

⇡R
F1(2qR)� Imf(q)

R
F2(2qR), (7)

where F1(x) =
R x
0
dt e

t2�x2

/x, F2(x) = (1 � e
�x2

)/x,
F3(x) = 1�x/2

p
⇡, and f(q) = 1/(�1/a0+re/2q

2�iq) is
the s-wave ⌅↵ scattering amplitude calculated by the effective
range expansion with the threshold parameters in Table I. The
LL formula is obtained from the KP formula by approximat-
ing the full wave function by the asymptotic wave function.
This means that if the detailed shape of the potential affects
the correlation function, the LL formula estimation should be
deviated from the result of the Koonin-Pratt formula. In Fig. 4,
we compare the results by the KP formula (5) with the cor-
responding ones by the LL formula for VHAL, Vstrong, and
Vweak potentials with the source size R = 1 fm. As shown
in Fig. 4, for R = 1 fm case, the results with the LL formula
do not reproduce those with KP formula for all potentials. In
particular, in the low momentum region, CLL(q) rapidly de-
creases while the result of the KP formula shows the strong
enhancement. Note that C(q) defined in Eq. (5) is always
positive while CLL(q) can be negative in the small momen-
tum region when re is large and positive. The negative CLL(q)

seen in Fig. 4 also indicates that the LL formula is not appli-
cable in these cases. On the other hand, as shown in Fig. 5
for R = 3 fm and R = 5 fm cases, the LL formula gives
the good approximation of the KP formula results. This is
because the correlation from the large source is determined
mainly by the distortion of the wave function at large rela-
tive distance r where the detailed potential shape is irrelevant.
This failure of the LL formula for small source is qualitatively
consistent with what is found in the study of the ⇤↵ correla-
tion function [34].

Finally, we show the results of the ⌅
�
↵ correlation func-

tions in Fig. 6. Due to the Coulomb attraction, C(q) shows the
strong enhancement at the low momentum for all potentials.
The effect of the strong interaction emerges as the deviation
from the pure Coulomb result, where the strong interaction is
switched off. In contrast to the ⌅0

↵ correlation, the difference
between the adopted potentials in larger source is smeared by
the Coulomb attraction. Nevertheless, with a good resolution
of the measurement, it may be possible to distinguish differ-
ent potentials by the correlation function with R = 1-3 fm.
Through the comparison with C⌅0↵ in Fig. 3, we find that the
results with Vstrong and Vweak in the low momentum region
is simply enhanced due to Coulomb force from C⌅0↵. On the
other hand, C⌅�↵ with VHAL with R = 3 and 5 fm smaller
than the pure Coulomb case while C⌅0↵ shows the enhance-
ment. Namely, the correlation function of VHAL shows en-
hancement for the small source and suppression for the large
source with respect to the pure Coulomb result. This is noth-
ing but the source size dependence of the correlation func-
tion with a shallow bound state. This means that, when the
Coulomb assisted bound state exists, the typical source size
dependence can be observed in the ⌅

�
↵ correlation function

as the difference from the pure Coulomb result.

IV. CONCLUSION

Towards elucidating the N⌅ interaction, we We have dis-
cussed the ⌅↵ correlation function with the folding potential

• approximation by asymptotic  wave function  
  —> Good description for short range potential 

• Larger  than the folding potentials 
• No dip structure at /c

C(q)
q ∼ 100 MeV

• Large deviation due to the large effective range for 
   small source

Repulsive core causes dip in ! CΞα

re = 4.5 fm ( )VHAL

LL formula does not work for  from small source.C(q)

Gaussian 
VHAL
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 bound state and Coulomb effectΞ−α

 correlationΞα

•  and  : W.f. strongly localized in strong int. range. 
        → Short range int. is dominant.

•  : long range tail similar to pure Coulomb case 
        → Coulomb int. is dominant.
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 correlationΞ−α
potential EB [MeV]

VHAL 0.47
Vstrong 2.16
Vweak 0.18

• Dip structure at  MeV/c for  fm q ∼ 100 R = 1

  can be distinguished by the source size dependence5
ΞH

Repulsion core effect can be investigated with small source

•  and : Coulomb enhancement added to Vstrong Vweak CΞ0α

 correlationΞα

•  :  with  fm turns to be suppressedVHAL C(q) R = 3
—> Typical source size dependence with bound state 

• Coulomb int. added: 
—> Strong int. effect appear as deviation from pure Coulomb
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Summary

Femtoscopic study on the hadron interaction 
   • Direct approach to the low-energy interaction  
   • Sensitive to the near-threshold resonance  

-  
 • HAL QCD potential: Good agreement with ALICE data  
 • Future data from larger source needed  

-hyperon correlation function 
• -hyperon correlation is useful for further constraint. 
• Correlation line related to the detailed potential shape      

NΞ ΛΛ

α
α

Thank you for your attention!
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