

Yuki Kamiya Tohoku Univ.

Determination of hadron interaction with femtoscopy

Femtoscopy

High energy nuclear collision and FSI

Hadron-hadron correlation

$$C_{12}(k_1, k_2) = \frac{N_{12}(k_1, k_2)}{N_1(k_1)N_2(k_2)}$$

=
$$\begin{cases} 1 & \text{(w/o correlation)} \\ \text{Others (w/ correlation)} \end{cases}$$

Femtoscopy

High energy nuclear collision and FSI

Femtoscopy

• High energy nuclear collision and FSI

- Hadron-hadron correlation
 - Koonin-Pratt formula : S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990) $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} S(\mathbf{r}) |\varphi^{(-)}(\mathbf{q}, \mathbf{r})|^2_{\mathbf{q} = (m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)/(m_1 + m_2)}$ $S(\mathbf{r}) \quad : \text{Source function}$ $\varphi^{(-)}(\mathbf{q}, \mathbf{r}) : \text{Relative wave function}$
- Depends on ...

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

5

• How to control source size R

Source size dependence

Line shapes of C(q): relation to interaction

Source size dependence for typical for bound state cases!

Importance of source size dependence

• Bound state

• Coupled channel effect

- More interaction detail
 - Energy dependence/potential shape nearby resonance, long range int....
 - —> fail of LL formula

• How to construct correlation model from theory; $\mathcal{F}(q) \to C(q)$

- Using effective potential
 - Construct the eff. potential by reproducing the amplitude \mathcal{F} (or threshold parameters (a_0, r_e))
 - Solving the Schrödinger eq. $\longrightarrow \phi$
- Using half offshell *T*-matrix $T_l(q, k; E)$ Haidenbauer, Nuclear Physics A 981 (2019) 1–16
 - $T_l(q,k;E) \longrightarrow \varphi$

$$\tilde{\psi}(k,r) = j_l(kr) + \frac{1}{\pi} \int j_l(qr) \, dq \, q^2 \frac{1}{E - E_1(q) - E_2(q) + i\epsilon} T_l(q,k;E)$$

- Using Lednicky-Lyuboshitz formula
 - Approximation for the simple interaction
 - Direct relation between C(q) and $\mathcal{F}(q)$

Comparison of model predictions and correlation data

• How to extract interaction from Correlation data; $C(q) \rightarrow \mathcal{F}(q)$

- Lednicky-Lyuboshitz (LL) formula R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).
 - Approximate φ by asymptotic wave func.(s-wave only)

$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \ S(\mathbf{r}) |\varphi^{(-)}(\mathbf{q}, \mathbf{r})|^2$$
$$\varphi^{(-)}(\mathbf{q}, \mathbf{r}) \xrightarrow{r \to \infty} \exp(-i\mathbf{q} \cdot \mathbf{r}) + \frac{\mathscr{F}(-q)}{r} \exp(-iqr)$$

 \bullet Use effective range expansion for amplitude ${\mathcal F}$

$$\mathcal{F}(q) = \left[\frac{1}{a_0} + \frac{r_e}{2}q^2 - iq\right]^{-1}$$

$$C(q) = 1 + \left[\frac{|\mathcal{F}(q)|^2}{2R^2}F_3\left(\frac{r_{\text{eff}}}{R}\right) + \frac{2\text{Re}\ \mathcal{F}(q)}{\sqrt{\pi R}}F_1(2qR) - \frac{\text{Im}\ \mathcal{F}(q)}{R}F_2(2qR)\right]$$

• Fit the data with formula

- Direct relation between C(q) and $\mathcal{F}(q)$
- Difficult to introduce the detailed interaction e.g. coupled-channel
- Coulomb int. can be only introduced with Gamow factor (too crude for C(q))

$N\Xi$ interaction and *H*-dibaryon state

• $\Lambda\Lambda$ -N Ξ interaction (S = -2) and H-dibaryon

- J = 0: Unique sector in flavor Octet-Octet baryon int.
- $8 \otimes 8 = 1 \oplus 8_A \oplus 8_S \oplus 10 \oplus \overline{10} \oplus 27$ Pauli arrowed

 - Attractive color-magnetic int.
- Flavor-singlet dihyperon "H" R. L. Jaffe, PRL 38 (1977), 195.

Predicted as "single hadron" below $\Lambda\Lambda$

• Binding energy of double Λ hypernucleus Takahashi et al., PRL87 (2001) 212502

 $\rightarrow \Lambda\Lambda$ does NOT form (deep) bound state

- HAL QCD $\Lambda\Lambda$ -N Ξ coupled-channel potential
 - K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.
 - Strong attraction in J = 0, I = 0 $N\Xi$ channel

 $a_0^{p\Xi^{-}(J=0)} = -1.21 - i1.52$

H dibaryon state is just barely unbound.

Fate of *H*-dibaryon?

$\Lambda - N \Xi HAL QC$ D potential

- $N\Xi$ - $\Lambda\Lambda$ HAL QCD potential. • HAL QCD method Ishii, Aoki, Hatsuda, PRL99 (2007) 022001 N. Ishii et al Phys. Lett. B712(2012)437
 - $\langle 0 | B_1 B_2(t, \vec{r}) \vec{I}(0) | 0 \rangle$ $=A_0\Psi(\vec{r}, E_0)e^{-E_0t}+\cdots$
 - Nearly physical mass calculation $m_{\pi} = 146 \text{ MeV} \ m_K = 525 \text{ MeV}$
- $\sim N \Xi \Lambda \Lambda J = 0$ channel
 - Strong attraction for $N\Xi$ (I = 0)
 - Weak attraction for $\Lambda\Lambda$ channel
 - Weak $\Lambda\Lambda$ - $N\Xi$ coupling
 - Solving Schrödinger eq.with physical masses

Scat. length : $a_0 \equiv -\mathcal{F}(E_{\text{th}})$ Virtual pole : -3.9-*i*0.3 MeV (from $n\Xi^0$ thr.)

No H dibaryon state

channel		a_0 [fm]		
J = 0	$p\Xi^-$	$-1.22 \pm 0.13^{+0.08}_{-0.00} - i1.57 \pm 0.35^{+0.18}_{-0.23}$		
	$n\Xi^0$	$-2.07 \pm 0.39^{+0.28}_{-0.35} - i0.14 \pm 0.08^{+0.00}_{-0.01}$		
	$\Lambda\Lambda$	$-0.78 \pm 0.22^{+0.00}_{-0.13}$		
Y. Kamiya, et al. PRC 105, 014915 (2022) 12				

$\Lambda\Lambda$ and $p\Xi^-$ correlation function

$\Lambda\Lambda$ and $p\Xi^-$ correlation function

• Static spherical Gaussian with $R_{N\Xi} \sim R_{\Lambda\Lambda}$

• Fitting for comparison
$$C_{\text{fit}}(q) = \underbrace{A_{\text{non-femt}}(q)}_{a + bq} \times \begin{bmatrix} 1 + \lambda(C_{\text{Theor}}(q) - 1) \end{bmatrix}$$
• Miss identification
• feed-down

4

$\Lambda\Lambda$ - $N\Xi$ interaction and $\Lambda\Lambda$ and $p\Xi^-$ correlation function

◦ p Ξ[−] correlation function

$$C_{p\Xi^{-}} = \frac{1}{4}C_{p\Xi^{-},\text{singlet}} + \frac{3}{4}C_{p\Xi^{-},\text{triplet}}$$

Couples to $\Lambda\Lambda$ (H-dibaryon channel)

- Enhancement from pure Coulomb case
- nΞ⁰ source contribution
 Singlet (J=0) : sizable enhancement
 - Triplet (J=1) : negligible
- $\Lambda\Lambda$ source contribution : Negligible

$\Lambda\Lambda$ - $N\Xi$ interaction and $\Lambda\Lambda$ and $p\Xi^-$ correlation function

- $\Lambda\Lambda$ correlation function $C_{\Lambda\Lambda} = 1 - \frac{1}{2} \exp(-4q^2R^2) + \Delta C_{\Lambda\Lambda}$ Quantum statistics Strong int.
 - Enhancement from quantum statistics week attractive interaction
 - $N\Xi$ cusps: almost invisible
 - Due to weak coupling of $\Lambda\Lambda$ -N Ξ
 - Comparison with ALICE data pPb 5.02 TeV, *pp* 13 TeV collisions : S. Acharya et al. [ALICE], PLB 797 (2019).
 - Weak attraction of $\Lambda\Lambda$ int.
 - There is no signal of H-dibaryon

Y. Kamiya, et al. PRC 105, 014915 (2022)

Femtoscopy for S = -1 systems

More precise data required to distinguish them.

$d\Xi^-$ correlation function

K. Ogata, T. Fukui, Y. Kamiya, and A. Ohnishi,

n

60

q (MeV/c)

n

CDCC

1ch

90

R = 1.2 fm

200

 $^{13}S_1$ only

Pure Coul

120

300

9

Talk slide from Raffaele Del Grande in HHIQCD 2024

Correlation with few body systems

Talk slide from Oton Vazquez Doce's in FemTUM2022

Correlation with few body systems

p-d correlation

NNN using proton-deuteron correlations

 Point-like particle models anchored to scattering experiments

W. T. H. Van Oers et al., NPA 561 (1967); J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983); A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

- Coulomb + strong interaction using Lednický model Lednický, R. Phys. Part. Nuclei 40, 307–352 (2009)
- Only s-wave interaction
- Source radius evaluated using the universal m_{τ} scaling

Point-like particle description doesn't work for p-d

Ш

Talk slide from Raffaele Del Grande in HHIQCD 2024

Correlation with few body systems

● *p*-*d* correlation

NNN using proton-deuteron correlations

The p-d correlation function, assuming that p-p-n forms p-d

$$C_{pd}(k) = \frac{1}{A_d} \frac{1}{6} \sum_{m_1, m_2} \int d^3 r_1 d^3 r_2 d^3 r_3 S_1(r_1) S_1(r_2) S_1(r_3) \left| \Psi_{m_1, m_2} \right|^2$$

where $S_1(r)$ is a single-particle Gaussian source and A_d is the formation probability of a deuteron

- The three-body wavefunction of the p–d System $\Psi_{m_2,m_1}(x,y) = \Psi_{m_2,m_1}^{free} + \sum_{LSJ}^{J \leq \overline{J}} \sqrt{4\pi} i^L \sqrt{2L+1} e^{i\sigma_L} \left(1m_2 \frac{1}{2}m_1 \middle| SJ_z \right) (LOSJ_z | JJ_z) \widetilde{\Psi}_{LSJJ_z}$ Asymptotic solution Three-body dynamics • Hadron-nuclei correlations at the LHC can
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

M. Viviani et al, Phys.Rev.C 108 (2023) 6, 064002

Talk slide from Raffaele Del Grande in HHIQCD 2024

Y- α correlation

• Good agreement of *Y*-*N* correlation function

Y. Kamiya, et al. PRC 105, 014915 (2022)

- Large binding energy of α
 - —> Good description by two body treatment
- *Y*-α potential: smeared potential range
 -> Detailed potential shape may be investigated

$\Lambda \alpha$ correlation

• $N\Lambda$ interaction at finite density

- Chiral EFT with NLO D. Gerstung, N. Kaiser, W. Weise, EPJA 55 (2020)
 - $\rightarrow \Lambda NN$ three body interaction gives the additional repulsion A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC 110 (2024), 014001 \rightarrow stiffer EOS
- Chi3: Skyrme type Λ potential based on Chiral EFT with three body
 Δ Jinno. K. Murase, Y. Nara, and A. Ohnishi, PRC 108 (2023) 6,065803

$$U_{\Lambda}^{\text{local}} = a_1^{\Lambda} \rho_N + a_2^{\Lambda} \tau_N - a_3^{\Lambda} \triangle \rho_N + a_4^{\Lambda} \rho_N^{4/3} + a_5^{\Lambda} \rho_N^{5/3}$$

- Well reproduces the binding energy of Λ in hypernuclei
- $N\Lambda$ potential model with different density dependence

D. E. Lanskoy and	Chi2mom	Chiámon	⁽¹ 27)-IV	ΗΡΛ2
a1 (MeV fm^3)	-352.20	-388.30	-500.89	-302.72
a2 (MeV fm^5)	39.35	47.28	16.00	23.73
a3 (MeV fm^5)	52.18	36.56	20.00	29.84
•al4¥(-MéV fm^4)	-356.96	-405.68	480.54	581.04
a5 (MeVifm^5) de	1000.80	1256.74	0.00	0.00
RMSD (MeV)	1.59	0.75	0.74	0.78
J_Λ (MeV)	-33.45	-30.03	-29.78	-31.23
L_Λ (MeV)	-23.55	9.32	-36.24	-46.10
K_Λ (MeV)	415.00	532.30	217.80	277.40
m*Λ/mΛ	0.73	0.70	0.87	0.82

$\Lambda \alpha$ correlation

$\Lambda \alpha$ correlation

- Source size dependence of $C_{\Lambda\alpha}$
 - Characteristic lineshapes for weak binding system $(^{5}_{\Lambda}\text{He})$
 - Dip for small source
 - Suppression for large source
 - Potential difference appear only in small source results

Large source results are useful to check E_B of ${}_{\Lambda}^{5}$ He

- Effect of repulsive core
- C(q) are ordered from bottom to top as

Isle -> Chi3 -> LY-IV -> SG (No core)

Same ordering with the strength of repulsive core

-> Stronger core causes Stronger suppression

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC 110 (2024), 014001

• Effect of smeared repulsive core/attraction?

Predictions for $\Xi \alpha$ bound state: ${}_{\Xi}^{5}$ H

• Coulomb assisted bound state <- HAL QCD pot.

Folding potential and variations

 V_{HAL}: Folding potential based on S = -2 HAL QCD potential E. Hiyama, M. Isaka, T. Doi, and T. Hatsuda, PRC 106, 064318 (2022). K. Sasaki et al., NPA, 121737 (2019).

potential	<i>EB</i> ($\Xi^0 \alpha$) [MeV]	$EB(\Xi^{-}\alpha)$ [MeV]	
VHAL	(Unbound)	0.47	
Vstrong = 2 *VHAL	1.15	2.16	
Vweak = VHAL /2	(Unbound)	0.18	

• $\Xi^0 \alpha$ correlation

potential	EB [MeV]
VHAL	(Unbound)
Vstrong	1.15
Vweak	(Unbound)

- V_{strong} : Typical source size dependence with bound state
 - Suppression for large *R*
 - Enhancement and dip for for small R
- V_{HAL} , V_{weak} : strong enhancement • consistent with No $\frac{5}{\Xi}$ H
- Dip in q ~ 100 MeV/c for V_{HAL} and V_{weak}
 Suppression by repulsive core?
 - Source size dependence can
 - Effect of detailed potential shape?

30

4.5

Detailed potential dependence

- Compare the folding potential results with simpler models
- Purely attractive Gaussian potential

 $V_{\text{Gaussian}}(r) = V_0 \exp(-r^2/b^2),$

- Larger C(q) than the folding potentials
- No dip structure at $q \sim 100 \text{ MeV}/c$

<u>Repulsive core causes dip in $C_{\Xi\alpha}!$ </u>

- Lednicky-Lyuboshitz (LL) formula R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).
 - approximation by asymptotic wave function
 - —> Good description for short range potential
 - Large deviation due to the large effective range for small source

$$r_e = 4.5 \text{ fm} (V_{\text{HAL}})$$

L formula does not work for C(q) from small source.

$\Xi^{-}\alpha$ bound state and Coulomb effect

- V_{HAL} and V_{strong} : W.f. strongly localized in strong int. range.
 - \rightarrow Short range int. is dominant.
- V_{weak} : long range tail similar to pure Coulomb case \rightarrow Coulomb int. is dominant.

B

0.47

2.08

0.18

[MeV]

$\Xi^{-}\alpha$ correlation

potential	EB [MeV]
VHAL	0.47
Vstrong	2.16
Vweak	0.18

- Coulomb int. added:
 - -> Strong int. effect appear as deviation from pure Coulomb
- V_{strong} and V_{weak} : Coulomb enhancement added to $C_{\Xi^0\alpha}$
- V_{HAL}: C(q) with R = 3 fm turns to be suppressed
 —> Typical source size dependence with bound state

 ${}_{\Xi}^{5}$ H can be distinguished by the source size dependence

• Dip structure at $q \sim 100 \text{ MeV}/c$ for R = 1 fm

Repulsion core effect can be investigated with small source

Summary

- Femtoscopic study on the hadron interaction
 - Direct approach to the low-energy interaction
 - Sensitive to the near-threshold resonance

\circ N Ξ - $\Lambda\Lambda$

- HAL QCD potential: Good agreement with ALICE data
- Future data from larger source needed
- α -hyperon correlation function
 - α -hyperon correlation is useful for further constraint.
 - Correlation line related to the detailed potential shape

Thank you for your attention!

34

Thank you!

