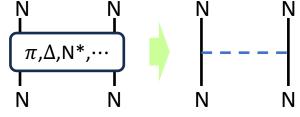
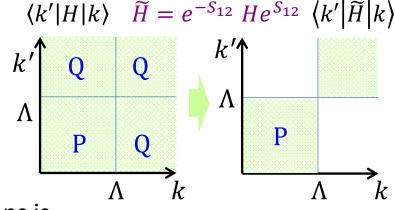
Properties of hyperons in nuclear matter with baryon-baryon interactions constructed in chiral effective field theory Michio Kohno, RCNP Osaka University

- baryon-baryon interactions in chiral effective field theory (ChEFT)
 - Chiral symmetry
 - Construction (parametrization) of baryon-barton interactions
- three-body forces
- ΛN and ΛNN interactions
- Properties of Λ in the nuclear medium (symmetric nuclear matter)
- **3**-body forces in hypertriton and Λ-deuteron correlation functions

NN interactions and Three-body forces (induced many-body forces)

- Instantaneous B-B potentials are derived through the elimination of various degrees of freedom, such as mesons and baryon excited states.
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 - > In principle, by unitary transformation.
 - > No problem for on-shell properties in a two-body system.
 - > Unitary transformation induces many-body forces in many-baryon systems.
- Low-momentum interactions in model space P.
 - > Correlations involving states in Q-space are eliminated.
 - Many-body interactions manifest in model space P.
 (induced three-body interaction)
- In ChEFT, the chiral symmetric Lagrangian of nucleons and pions is determined in low-momentum space (power counting). The pions are subsequently eliminated.





Construction of (instantaneous) NN interactions

Eliminate other degrees of freedom than nucleons by a unitary transformation.

[Okubo, PTP12 (1954), Taketani-Machida-Ohnuma, PTP7 (1954)] [Epelbaum, arXiv:1001.3229 "Nuclear forces from Ch-EFT: a primer"]

$$H = \begin{pmatrix} PHP & PHQ \\ QHP & QHQ \end{pmatrix} \implies H_{eff} = \tilde{X}^{-1}H\tilde{X}$$

> decoupling eq. $QHP + QHQ\omega - \omega PHP - \omega PHQ\omega = 0$ is solved perturbatively. Time-ordered perturbation.

$$V_{eff} = H_{eff} - PHP = -g^2 P \left[\frac{1}{2} H_1 \frac{1}{H_0 - E_Q} H_1 + h.c. \right] P \qquad 1\pi \text{ exchange}$$
$$-g^4 P \left[\frac{1}{2} H_1 \frac{1}{H_0 - E_Q} H_1 \frac{1}{H_0 - E_Q} H_1 \frac{1}{H_0 - E_Q} H_1 + \cdots \right] P + \cdots \qquad 2\pi \text{ exchange}$$

Νπ, Νππ

ΝΝππ,…

 $N \rightarrow N\pi$

 $N\pi \rightarrow N$

ΝΝπ.

N→Nπ

N, NN

NNN,

- The unitary transformation induces many-body forces in many-nucleon space.
- Calculations of Feynman diagrams directly provide the Born amplitudes of the corresponding potential.

Νπ, Νππ

ΝΝππ.…

ΝΝπ,

Ω

N, NN

NNN,

Chiral symmetry

Before QCD

- PCAC: axial-current conservation implies (chiral) symmetry
- Pion is not chirally invariant. Pion is a Nambu-Goldstone due to the spontaneous breaking of the chiral symmetry. [chiral transformation (ch-x) $e^{i\theta\gamma_5}$]
- Effective model such as linear σ -model: (π, σ) where $\pi^2 + \sigma^2$ is invariant under ch-x.

The proposal by Weinberg (1979): consider an effective model with a general chiral-symmetric Lagrangian instead of specific models. Chiral-invariant Lagrangian for meson-baryon coupling

flavor SU(3)×SU(3) : octet baryons and pseudoscalar (ps) mesons

$$(B_{ij}) = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ -\Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}, \quad (P_{ij}) = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ -K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$

Meson-Baryon coupling

$$u^{2} = exp(i\sqrt{2}P/f_{0})$$

$$D_{\mu}B = \partial_{\mu}B + \left[\frac{1}{2}(u^{\dagger}\partial_{\mu}u + u\partial_{\mu}u^{\dagger}), B\right], \qquad u_{\mu} = i(u^{\dagger}\partial_{\mu}u - u\partial_{\mu}u^{\dagger})$$

$$\mathcal{L}_{MBB} = \operatorname{tr}\left(\bar{B}(i\gamma^{\mu}D_{\mu} - M_{0})B\right) - \frac{D}{2}\operatorname{tr}\left(\bar{B}\gamma^{\mu}\gamma_{5}\{u_{\mu}, B\}_{\mu}\right) - \frac{F}{2}\operatorname{tr}\left(\bar{B}\gamma^{\mu}\gamma_{5}[u_{\mu}, B]\right)$$

> Low-energy effective theory: expansion in terms of *P* and non-relativistic approx.

NN, π NN contact, π NN, and $\pi\pi$ NN Lagrangian

NN and π NN contact terms that describe the physics beyond the cutoff scale.

$$\mathcal{L}_{NN} = -\frac{1}{2} C_S \overline{N} N \overline{N} N - \frac{1}{2} C_T (\overline{N} \sigma N) (\overline{N} \sigma N) - \frac{D}{4 f_\pi^2} (\overline{N} N) \overline{N} [\tau \cdot (\sigma \cdot \nabla) \pi] N - \frac{E}{2} (\overline{N} N) (\overline{N} \tau N) \cdot (\overline{N} \tau N)$$

$$= \pi NN, \text{ and } \pi \pi NN \text{ up to two-derivative terms of the pion field}$$

$$\mathcal{L}_{\pi NN} = \overline{N} \left[i\partial_0 - \frac{g_A}{2f_{\pi}} \boldsymbol{\tau} \cdot (\boldsymbol{\sigma} \cdot \nabla) \boldsymbol{\pi} - \frac{D}{4f_{\pi}^2} \boldsymbol{\tau} \cdot (\boldsymbol{\pi} \times \partial_0 \boldsymbol{\pi}) \right] N$$

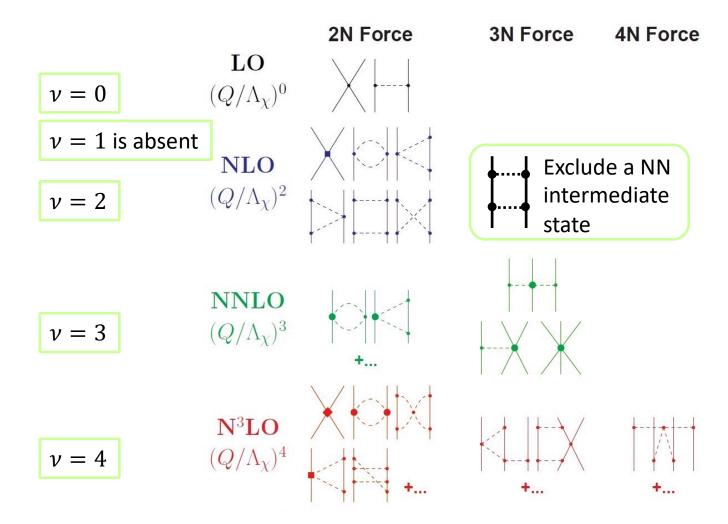
$$+ \overline{N} \left[\frac{1}{2M_N} \nabla^2 - \frac{ig_A}{4M_N f_{\pi}} \boldsymbol{\tau} \cdot \left[\boldsymbol{\sigma} \cdot \left(\overline{\nabla} \partial_0 \boldsymbol{\pi} - \partial_0 \boldsymbol{\pi} \nabla \right) \right] - \frac{i}{8M_N f_{\pi}^2} \boldsymbol{\tau} \cdot \left[\overline{\nabla} \cdot (\boldsymbol{\pi} \times \nabla \boldsymbol{\pi}) - (\boldsymbol{\pi} \times \nabla \boldsymbol{\pi}) \cdot \nabla \right] \right] N$$

$$+ \overline{N} \left[4c_1 m_{\pi}^2 - \frac{2c_1}{f_{\pi}^2} m_{\pi}^2 \boldsymbol{\pi}^2 + \left(c_2 - \frac{g_A^2}{8M_N} \right) \frac{1}{f_{\pi}^2} (\partial_0 \boldsymbol{\pi} \cdot \boldsymbol{\partial}_0 \boldsymbol{\pi}) + \frac{c_3}{f_{\pi}^2} \left(\partial_{\mu} \boldsymbol{\pi} \cdot \boldsymbol{\partial}^{\mu} \boldsymbol{\pi} \right) + \left(c_4 + \frac{1}{4M_N} \right) \frac{1}{2f_{\pi}^2} \epsilon^{ijk} \epsilon^{abc} \sigma^i \tau^a (\partial^j \pi^b) (\partial^k \pi^c) \right] N$$

$$\succ \text{ Parameters are fitted by analyzing } \pi N \text{ scattering data.}$$

 \succ Parameters are fitted by analyzing πN scattering data.

Feynman diagrams in each chiral order ν (power counting)



 N²LO can fit the scattering data well.

- (N⁵LO parametrization is present.)
- The number of parameters is about 30 at N²LO.
 - The parametrization that incorporates the Isobar Δ in the Feynman diagrams is also attempted.

Power counting

The guideline to derive a potential.

```
power counting, Weinberg (1979)
```

- Feynman diagrams are organized in according to the order ν of the low-momentum Q (low-momentum scale $(Q/\Lambda)^{\nu}$): the expansion in terms of ν
- Diagrams consisting exclusively of nucleons are excluded from consideration. They are included in solving the Lippmann-Schwinger equation after constructing the potential.

(It is not possible to describe a bound state by perturbation.)

• ν is given by $\nu = 2L + \sum_i (d_i + \frac{n_i}{2} - 2)$, where *i* specifies a vertex, $d_i(n_i)$ is the number of the derivative at the vertex (nucleons), and *L* is the number of loops.

(In the case of 3BF, $\nu = 2 + 2L + \sum_{i} (d_i + \frac{n_i}{2} - 2)$)

example : next-to-leading order (NLO) $\nu = 2$

• Typical example of $\nu = 2L + \sum_i (d_i + \frac{n_i}{2} - 2) = 2$ diagram

The diagram with 3 vertices ($n_{1,2,3} = 2$, $d_{1,2,3} = 1$) and 1 loop (L = 1)

corresponds to two-pion exchange.

$$V = i \frac{g_A^2}{16f_\pi^4} \int \frac{d^4l}{(2\pi)^4} (2l^\mu + q^\mu) \epsilon^{abc} \tau_1^c \,\bar{u}_1(p') \gamma_\mu u_1(p) \frac{i}{l^2 - m_\pi^2 + i\epsilon} \qquad p \qquad -p$$

$$\times \frac{i}{(l+q)^2 - m_\pi^2 + i\epsilon} \bar{u}_2(-p') (-l^\nu) \tau_2^b \gamma_\nu \gamma_5 \frac{i(k \cdot \gamma + M_N)}{k_N^2 - M_N^2 + i\epsilon} (l^\rho + q^\rho) \tau_2^a \gamma_\rho \gamma_5 u_2(-p)$$

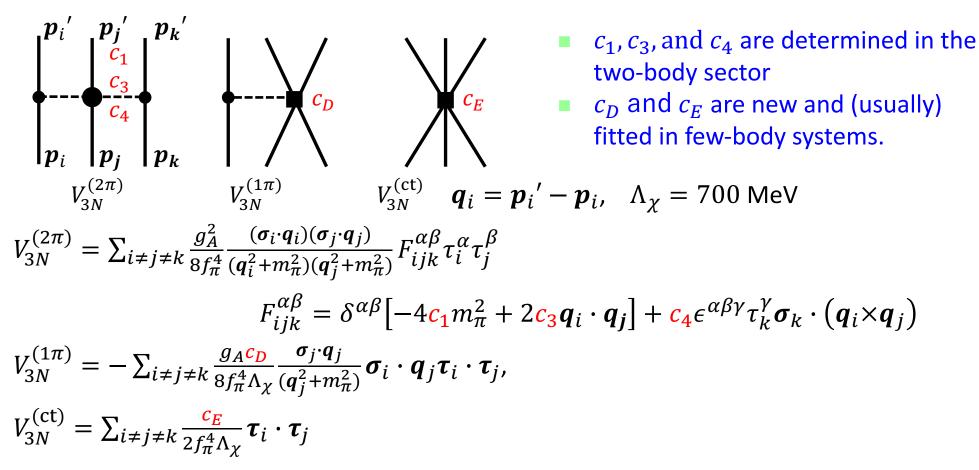
$$\tau_{1} \cdot \tau_{2} \frac{g_{A}^{2}}{(4\pi)^{2}} \frac{1}{24f_{\pi}^{4}} \left[(18m_{\pi}^{2} + 5q^{2}) \left(-\frac{2}{\eta} + \gamma - 1 - \ln 4\pi \right) - 4m_{\pi}^{2} - \frac{13}{3}q^{2} + (16m_{\pi}^{2} + 10q^{2}) \frac{\sqrt{q^{2} + 4m_{\pi}^{2}}}{q} \ln \frac{\sqrt{q^{2} + 4m_{\pi}^{2}} + q}{2m_{\pi}} + 2(18m_{\pi}^{2} + 5q^{2}) \ln \frac{m_{\pi}}{\lambda} \right]$$

example : next-to-next-to-leading order (NNLO) $\nu = 3$

• Example of v = 3 two-pion exchange (L = 1) loop diagram The diagram with one vertex of n = 2, d = 2 and two vertices of n = 2, d = 1. (low-energy constants c_1, c_3 , and c_4 emerge, which contribute to 3BFs.)

$$\frac{3g_A^2}{16\pi f_\pi^4} \left\{ \frac{g_A^2 m_\pi^5}{16M_N (q^2 + 4m_\pi^2)} - \left[2m_\pi^2 (2c_1 - c_3) - q^2 \left(c_3 + \frac{3g_A^2}{16M_N} \right) \right] \frac{(q^2 + 2m_\pi^2)}{2q} \tan^{-1} \frac{q}{2m_\pi} \right\} \\ + \tau_1 \cdot \tau_2 \frac{g_A^2}{128\pi M_N f_\pi^4} \left\{ \frac{3g_A^2 m_\pi^5}{q^2 + 4m_\pi^2} - \left[4m_\pi^2 + 2q^2 - g_A^2 (q^2 + 4m_\pi^2) \right] \frac{(q^2 + 2m_\pi^2)}{2q} \tan^{-1} \frac{q}{2m_\pi} \right\} \\ + \frac{\sigma_1 \cdot \sigma_2 + S_{12}(k)}{3} \left[\frac{9g_A^2}{512\pi M_N f_\pi^4} \frac{(q^2 + 2m_\pi^2)}{2q} \tan^{-1} \frac{q}{2m_\pi} - \tau_1 \cdot \tau_2 \frac{3g_A^2}{32\pi f_\pi^4} \left\{ \left(c_4 + \frac{1}{4M_N} \right) (q^2 + 4m_\pi^2) - \frac{g_A^2}{8M_N} (10m_\pi^2 + 3q^2) \right\} \frac{1}{2q} \tan^{-1} \frac{q}{2m_\pi} \right] \\ - i \frac{1}{2} (\sigma_1 + \sigma_2) \cdot (q \times k) \{\dots \dots \}$$

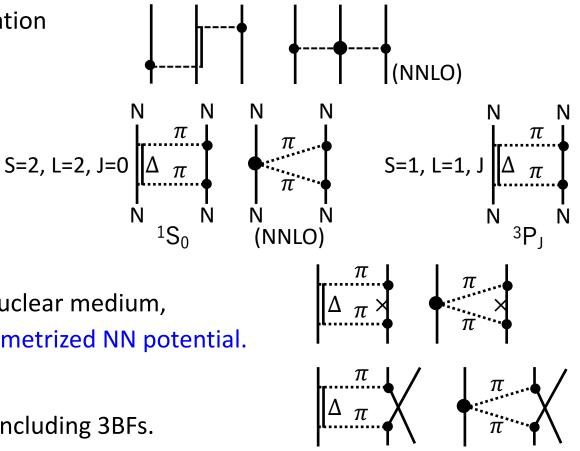
Leading order (NNLO) 3-nucleon forces (explicit expression)



> Subleading-order 3NF's have been worked out beyond N²LO.

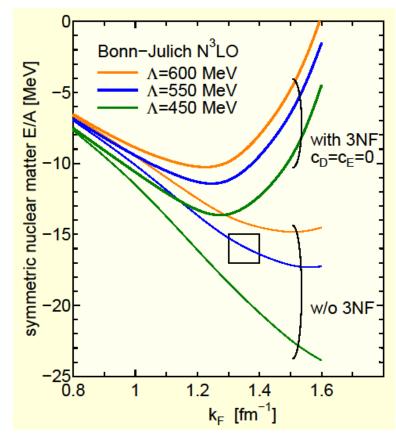
3BF contribution in view of Pauli blocking

- Typical 3-BF : Fujita-Miyazawa type Δ-excitation
- Δ-excitation is important in two-body correlations →attractive contribution
 - This effect is implicitly taken care of, when an NN potential is parametrized.
- Δ-excitation is Pauli-blocked (partly) in the nuclear medium, but this effect cannot be treated by the parametrized NN potential.
- The Pauli-blocking effect is taken care of by including 3BFs.



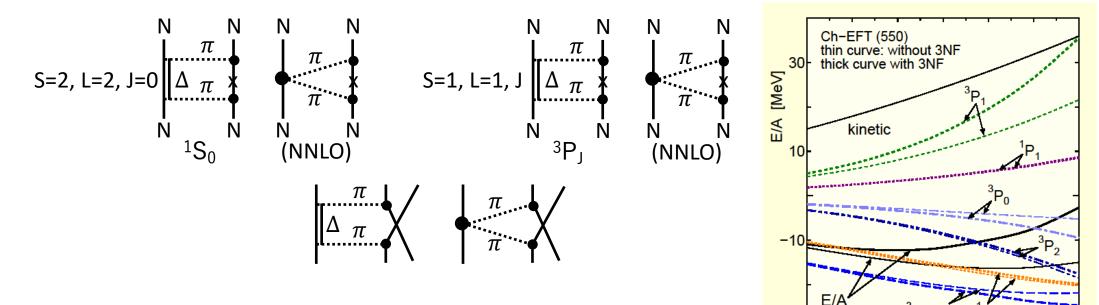
3BF (c1, c2, and c4) contributions to the saturation curve in SNM

- LOBT calculations in symmetric nuclear matter.
 - Nuclear saturation can not be reproduced when only twobody interactions are considered.
 - > Calculations using chiral N³LO interactions.
 - Off-shell properties are different, although on-shell properties are nearly equivalent.
- Contributions of 3BFs (normal-ordered density dependent two-body interactions), their parameters of which are determined in the two-body sector, are repulsive at high densities.
 - > To reproduce the empirical saturation point, the values of the contact parameters (c_D and c_E) are adjusted, which may be different from those for light nuclei.



Attractive and repulsive contributions of 3NFs in nuclear matter

- Tensor component in ${}^{3}S_{1}$ is enhanced by 3NFs \rightarrow attractive contribution in ${}^{3}S_{1}$ channel.
- Δ -excitation processes in ${}^{1}S_{0}$ and ${}^{3}P_{J}$ channels are Pauli blocked \rightarrow repulsive contribution.



- > The repulsive contribution in the ³P_J channel is large.
- > The repulsive contribution in the ${}^{1}S_{0}$ channel is small.

1.6

k_F [fm⁻¹]

³(S+D)₁

1.4

1.2

ΛN potentials

- Before 2000: OBEP by Nijmegen group, quark model by Kyoto-Niigata group, and others
 - Advancement of the description of *NN* interactions in chiral effective field theory
 - Based on the chiral symmetry and its spontaneous breaking pattern
 - Systematic introduction of many-body forces consistent with two-body parameters
 - Possibility of estimating the range of uncertainty
 - ChEFT *NN* interactions are now standard for studying nuclear structures and reactions
- Parametrization of the interaction of the strangeness sector in ChEFT by Jülich-Bonn- München group
 - NLO13: "Hyperon-nucleon interaction at next-to-leading order in chiral effective field theory," Haidenbauer, Petschauer, Kaiser, Meißner, Nogga, and Weise, Nucl. Phys. A915, 24 (2013).
 - NLO19: "Hyperon-nucleon interaction within chiral effective filed theory revisited", Haidenbauer, Meißner, and Nogga, Eur. Phys. J. A (2020) 56:91.
 - NNLO: "Hyperon-nucleon interaction in chiral effective field theory at next-to-next-to-leading order," Haidenbauer, Meißner, Nogga, and Le, Eur. Phys. J. A (2023) 59:63.
- The parametrization based on Lattice data is not available for quantitative studies.

Leading-order SU_f(3) invariant MBB coupling

Leading-order SU_f(3) invariant MBB coupling Lagrangian

$$\mathcal{L}_{1} = -\frac{\sqrt{2}}{2f_{0}} \operatorname{tr} \left(D\bar{B}\gamma^{\mu}\gamma_{5} \{\partial_{\mu}P, B\} + F\bar{B}\gamma^{\mu}\gamma_{5}[\partial_{\mu}P, B] \right)$$

Explicit expression:

$$\mathcal{L}_{1} = -f_{NN\pi}\overline{N}\gamma^{\mu}\gamma_{5}\tau N \cdot \partial_{\mu}\pi + if_{\Sigma\Sigma\pi}\overline{\Sigma}\gamma^{\mu}\gamma_{5}\times\Sigma \cdot \partial_{\mu}\pi - f_{\Xi\Xi\pi}\overline{\Xi}\gamma^{\mu}\gamma_{5}\tau\Xi \cdot \partial_{\mu}\pi - f_{\Lambda\Sigma\pi}[\overline{\Lambda}\gamma^{\mu}\gamma_{5}\Sigma + \overline{\Sigma}\gamma^{\mu}\gamma_{5}\Lambda] \cdot \partial_{\mu}\pi - f_{\Lambda NK}[\overline{N}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}K + \overline{\Lambda}\gamma^{\mu}\gamma_{5}N\partial_{\mu}K^{\dagger}] - f_{\Xi\Lambda K}[\overline{\Xi}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}\overline{K} + \overline{\Lambda}\gamma^{\mu}\gamma_{5}\Xi\partial_{\mu}\overline{K}^{\dagger}] - f_{\Sigma NK}[\overline{\Sigma}\gamma^{\mu}\gamma_{5}\partial_{\mu}K^{\dagger}\tau N + \overline{N}\gamma^{\mu}\gamma_{5}\tau\partial_{\mu}K \cdot \Sigma] - f_{\Xi\Sigma K}[\overline{\Sigma}\gamma^{\mu}\gamma_{5}\partial_{\mu}\overline{K}^{\dagger}\tau\Xi + \overline{\Xi}\gamma^{\mu}\gamma_{5}\tau\partial_{\mu}\overline{K} \cdot \Sigma] - f_{NN\eta_{8}}\overline{N}\gamma^{\mu}\gamma_{5}N\partial_{\mu}\eta - f_{\Lambda\Lambda\eta_{8}}\overline{\Lambda}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}\eta - f_{\Sigma\Sigma\eta_{8}}\overline{\Sigma} \cdot \gamma^{\mu}\gamma_{5}\Sigma\partial_{\mu}\eta - f_{\Xi\Xi\eta_{8}}\overline{\Xi}\gamma^{\mu}\gamma_{5}\Xi\partial_{\mu}\eta$$

SU_f(3) relations

$$g_{A} = F + D \cong 1.26, \ \alpha = F/(F + D), \ f_{NN\pi} = f = \frac{g_{A}}{2F_{\pi}}, \ f_{\Xi\Xi\pi} = -(1 - 2\alpha)f,$$
$$f_{\Lambda NK} = -\frac{1}{\sqrt{3}}(1 + 2\alpha)f, \ f_{\Lambda\Sigma\pi} = \frac{2}{\sqrt{3}}(1 - \alpha)f, \ f_{\Sigma\Sigma\pi} = 2\alpha f, \ f_{\Sigma NK} = (1 - 2\alpha)f, \ \cdots$$

Strangeness S = -1: Leading-Order in ChEFT

- > H. Polinder, J. Haidenbauer, and U.-G. Meißner, Nucl. Phys. A779, 244 (2006)
- Contact terms without derivative, and one pseudoscalar-meson (π, K, η) exchange
- Leading-order SU_f(3) invariants $\mathcal{L}_{BBBB} = c_i(\overline{B}\Gamma_i B)(\overline{B}\Gamma_i B) + \cdots$

$$[\Gamma_1 = 1, \Gamma_2 = \gamma^{\mu}, \Gamma_3 = \sigma^{\mu\nu}, \Gamma_4 = \gamma^{\mu}\gamma_5, \Gamma_5 = \gamma_5]$$

Non-relativistic reduction gives

 $\mathcal{L}_{BBBB} = \sum_{ijkl=1}^{3} \{ c_{00}^{1} (B_{ij} B_{jk}) (B_{kl} B_{li}) + c_{00}^{2} (B_{ij} \sigma B_{jk}) \cdot (B_{kl} \sigma B_{li}) + c_{00}^{3} (B_{ij} B_{kl}) (B_{jk} B_{li}) + c_{00}^{4} (B_{ij} \sigma B_{kl}) \cdot (B_{jk} \sigma B_{li}) + c_{00}^{5} (B_{ij} B_{ji}) (B_{kl} B_{lk}) + c_{00}^{6} (B_{ij} \sigma B_{ji}) \cdot (B_{kl} \sigma B_{lk}) \}$

- In YN (S = -1) at LO, there are 5 S-wave contact low-energy constants
 - (c_{00}^{i} are reorganized) $C_{1S0}^{\Lambda N-\Lambda N}$, $C_{3S1}^{\Lambda N-\Lambda N}$, $C_{1S0}^{\Sigma N-\Sigma N}$, $C_{3S1}^{\Sigma N-\Sigma N}$, $C_{3S1}^{\Lambda N-\Sigma N}$

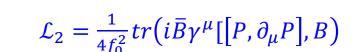
One ps-meson exchange potential is familiar (OBEP)

$$V_{B_1B_2 \to B_3B_4} = -f_{B_1B_3P}f_{B_2B_4P} \frac{(\sigma_1 \cdot q)(\sigma_2 \cdot q)}{a^2 + m_p^2} \times [\text{isospin factor}]$$

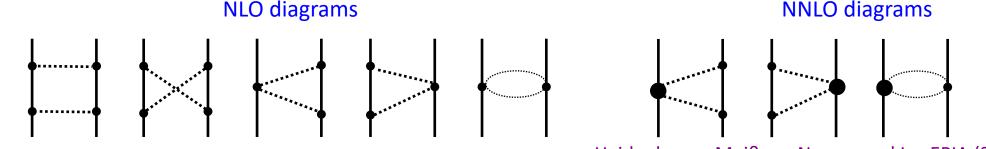
> SU3 relations are used for coupling constants $f_{B_1B_3P}$.

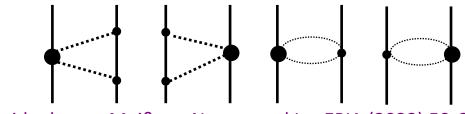
Strangeness S = -1: Next-to-Leading-Order in ChEFT

- > Haidenbauer, Petschauer, Kaiser, Meißner, Nogga, and Weise, Nucl. Phys. A915, 24 (2013).
- Contact terms with one derivative, and two-ps-meson exchange
- NLO contact terms (low-energy constants: 8 in s-wave and 10 in p-waves) $V_{BB \to BB}^{(2)} = C_1 q^2 + C_2 k^2 + (C_3 q^2 + C_4 k^2)(\sigma_1 \cdot \sigma_2) + \frac{i}{2} C_5(\sigma_1 + \sigma_2) \cdot (q \times k)$ + $C_6(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}) + C_7(\boldsymbol{\sigma}_1 \cdot \boldsymbol{k})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{k}) + \frac{i}{2}C_8(\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2) \cdot (\boldsymbol{q} \times \boldsymbol{k})$
- Leading-order SU_f(3) invariant MMBB coupling Lagrangian $\mathcal{L}_2 = \frac{1}{4f_c^2} tr(i\bar{B}\gamma^{\mu}[[P,\partial_{\mu}P],B))$



 \succ Experimental data is insufficient to go to higher orders (NNLO, N³LO, ...)





Haidenbauer, Meißner, Nogga, and Le, EPJA (2023) 59-63

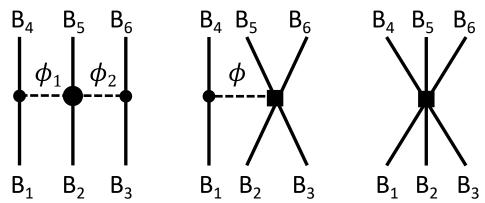
3-baryon interactions in SU(3) chiral effective field theory

- > Petschauer, Kaiser, Haidenbauer, Meißner, Weise, P. R. C93, 014001 (2016)
- Leading 3-baryon diagrams

diagrams with the power $\nu = 2 + 2L + \sum_i (d_i + \frac{n_i}{2} - 2) = 3$

 $(d_i \text{ and } n_i \text{ are the number of derivatives and baryon fields, respectively, at the vertex$ *i*, and*L*is the number of loops.)

Exchanged-meson φ is π, K, or η,
 depending on the baryon B.



Various combinations for exchanged mesons are possible, therefore, calculations are complicated.

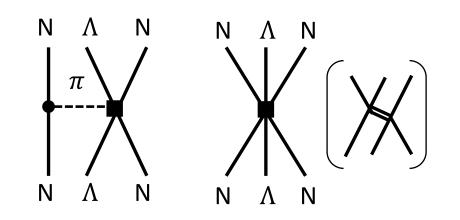
ΛNN 3-baryon interaction with pion exchange

• ANN interaction with 2π exchange (no $\pi\Lambda\Lambda$ vertex, but $\pi\pi\Lambda\Lambda$ is present)

$$V_{3N}^{(2\pi)} = \frac{g_A^2}{3f_\pi^4} \frac{(\sigma_3 \cdot q_3)(\sigma_2 \cdot q_2)}{(q_3^2 + m_\pi^2)(q_3^2 + m_\pi^2)} (\tau_2 \cdot \tau_3) \left[-(3b_0 + b_D)m_\pi^2 + (2b_2 + 3b_4)q_3 \cdot q_2 \right]$$

- It is not possible, at present, to determine NNLO coupling constants by experimental data.
- Petschauer *et al.* [Nucl. Phys. A957, 347 (2017)] estimated coupling constants by the decouplet saturation model.

• 1π exchange and contact Λ NN 3-baryon interaction



 π

2

 π

1

3

ΛN interactions in the nuclear medium

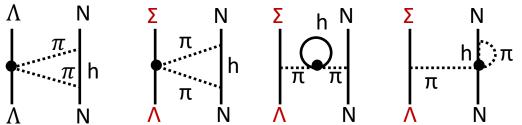
- Medium effects
 - ① Dispersion relation: potential insertion to the propagator
 - 2 Pauli effects for $\Lambda N \Lambda N$ correlation and $\Lambda N \Sigma N$ coupling
 - > tensor force is weak in $\Lambda N \Lambda N$ because of no one-pion exchange, but strong in $\Lambda N \Sigma N$.
 - ③ Three-body forces
- ① and ② are taken care of by G-matrix equation

•
$$G(\omega) = v + v \frac{Q}{\omega - (t + U + t + U)} G(\omega)$$

• $U(k) = \sum_{k'} \langle kk' | G(\omega = e_k + e_{k'}) | kk' \rangle$

$$e_k = t(k) + U(k)$$

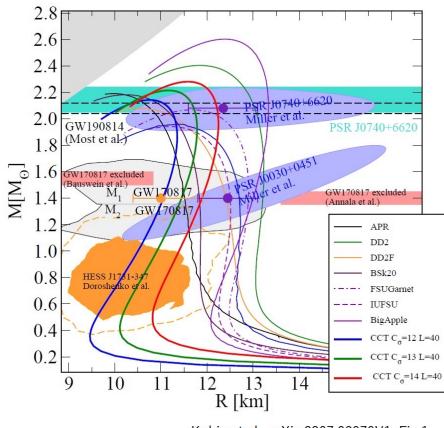
- 3BFs are incorporated by the normal-ordered prescription (density-dependent effective two-body interaction) $\langle ab | v_{12(3)} | cd \rangle_A \equiv \frac{1}{2} \sum_h \langle abh | v_{123} | cdh \rangle_A$ Λ N $\int_{a}^{A} \int_{a}^{N} \frac{1}{2} \frac{\pi}{2} \sum_{h} \langle abh | v_{123} | cdh \rangle_A$
- > 1π-exchange and contact terms are excluded.
 (coupling constants are uncertain even in sign.)



Neutron star matter and hyperons: hyperon puzzle

- Conventional knowledge of attractive Λ-N interactions from the experimental data of hypernuclei → Λ hyperons appear in high-density neutron star matter to avoid the increase of the neutron chemical potential.
 - > Even the standard neutron stars with the mass of $1.4M_{\odot}$ cannot be supported.
- To make the matter worse, heavy neutron stars were observed.
 - > PSR J1903+0327 (1.667 \pm 0.021 M_{\odot}), PSR J1614-2230 (1.928 \pm 0.017 M_{\odot}), PSR J0348+0432 (2.01 \pm 0.04 M_{\odot}), PSR J0740+6620 (2.14 $^{+0.10}_{-0.09} M_{\odot}$)
 - \succ Observation of binary NS merger GW170817 suggests that maximum mass is 2.3 2.4 M_{\odot}
- To understand heavy neutron stars, the EoS of neutron star matter has to be hard.
 - > Appearance of hyperons in neutron star matter is unfavorable: hyperon puzzle
 - > Appearance of Δ isobars is unfavorable: Δ puzzle

Neutron stars



Kubis et al., arXiv:2307.02979V1, Fig.1

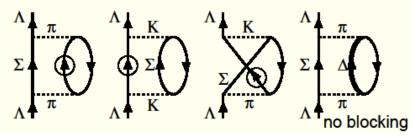
 NS with a small mass and a compact size

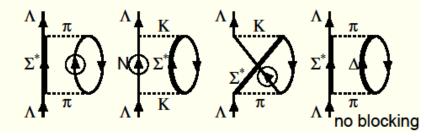
$$M = 0.77^{+0.20}_{-0.17} M_{\odot}$$
,

- $R = 10.4^{+0.86}_{-0.78} \text{ km}$
- Doroshenko et al., Nature Astron. 6, 1444 (2022)]

Heuristic 2nd order calculations

Pauli blocking effect for the Σ^* excitation in the nuclear medium (pure neutron matter) (Attractive contribution of the Σ^* excitation in free space is suppressed in the nuclear medium)





• coupling constants used (vertex form factor $e^{-(q/\Lambda)^2}$ with $\Lambda = 0.96$ GeV)

 $g_{\pi NN} = 12.677, \ g_{\pi\Lambda\Sigma} = 12.677, \ g_{KN\Lambda} = -11.448, \ g_{KN\Sigma} = 0.7032, \ f_{KN\Sigma^*} = -3.22, \ f_{\pi\Lambda\Sigma^*} = 1.106$

blocking of $arsigma$ excitation (MeV)				
$ ho_0/2$	$ ho_0$	$3\rho_0/2$	$2 ho_0$	
+0.52	+1.83	+3.58	+5.53	

included in G-matrix calculations

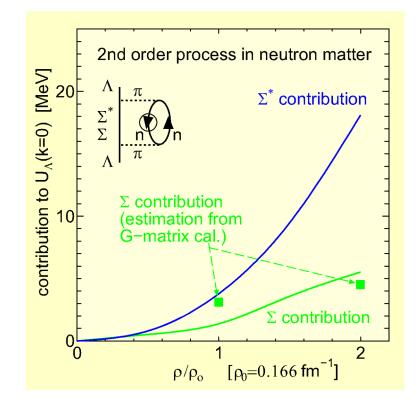
blocking of \varSigma^* excitation (MeV)				
$\rho_0/2$	$ ho_0$	$3\rho_0/2$	$2 ho_0$	
+0.80	+3.79	+9.48	+18.11	

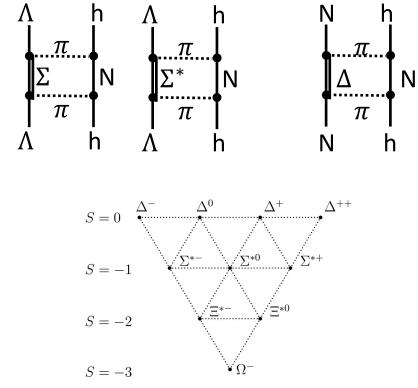
not included in G-matrix calculations

> Single-particle potentials are included for N, Λ , and Σ propagators

Heuristic 2nd order calculations

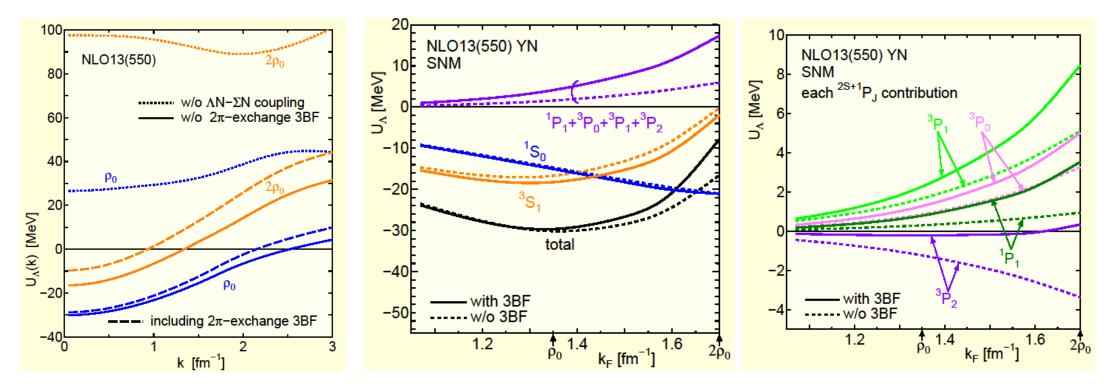
Repulsive contribution of three-body forces with the Σ^* intermediate excitation is expected to be large, in addition to the Pauli blocking effect for the $\Lambda N - \Sigma N$ coupling.





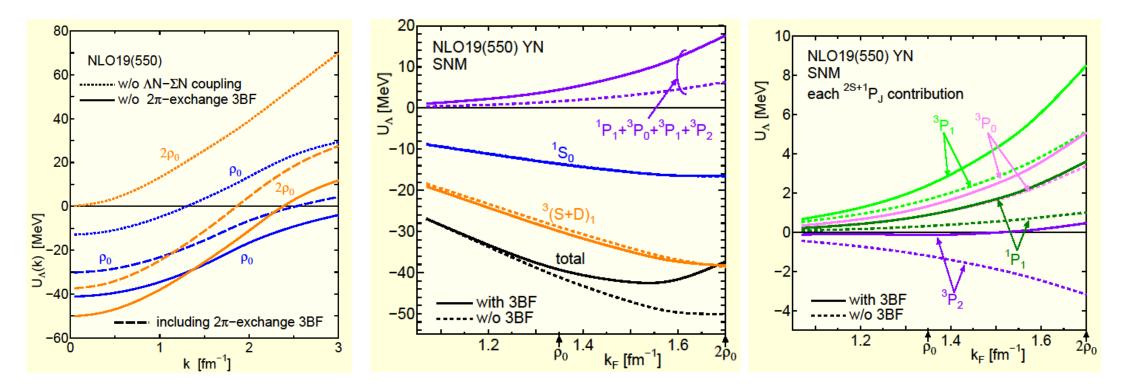
Density dependence of $U_{\Lambda}(0)$ in symmetric nuclear matter (NLO13)

- LOBT calculations in symmetric nuclear matter (SNM)
- 3BF contributions are attractive in the ³S₁-state (as in the case of 3NFs) and repulsive in P-states
 - $U_{\Lambda}(0) \sim -30$ MeV is reasonable, compared with the empirical single-particle potential depth.



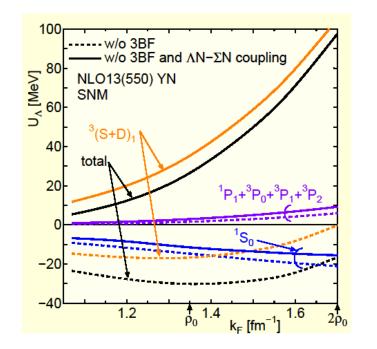
Density dependence of $U_{\Lambda}(0)$ in symmetric nuclear matter (NLO19)

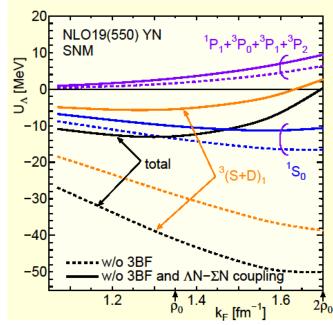
- No difference in P waves between NLO13 and NLO19
- The ${}^{3}S_{1}$ attraction of NLO19 is larger than that of NLO13, despite the weaker the $\Lambda N \Sigma N$ coupling
 - > Note that the 3BF parameters are same for NLO13 and NLO19

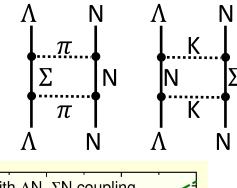


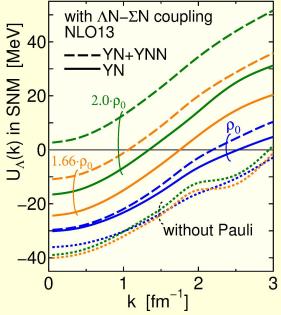
Role of $\Lambda N-\Sigma N$ coupling (ChEFT interactions)

- Calculations by switching off the $\Lambda N-\Sigma N$ coupling
 - > The coupling strength is model-dependent (not observable)
 - > The coupling is stronger in NLO13 than in NLO19.



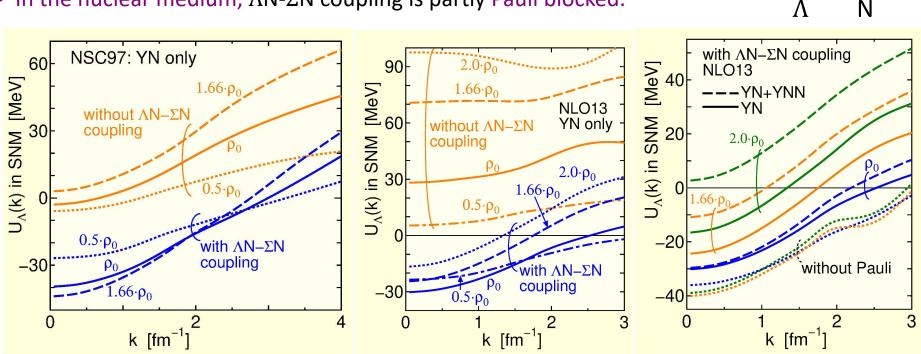






Role of $\Lambda N-\Sigma N$ coupling

- Calculations by switching off the $\Lambda N-\Sigma N$ coupling
 - > The coupling strength is model-dependent (not observable)
 - > The coupling is strong in NLO13 and NSC97, relatively weak in fss2 (and NLO1).
 - > In the nuclear medium, ΛN - ΣN coupling is partly Pauli blocked.



Ν

N

 π

.........

π

Σ

Ν

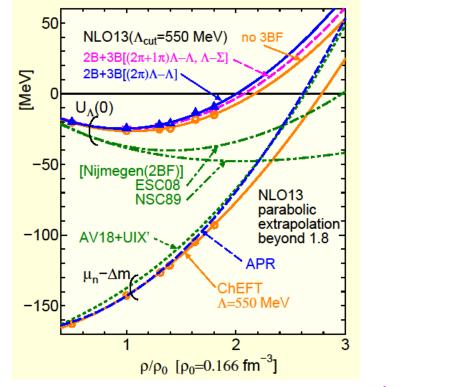
Ν

<u>.K</u>

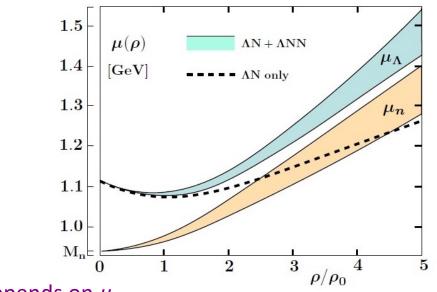
К

Λ chemical potential in neutron star matter

 M. Kohno, Phys. Rev. C97, 035206 (2018) calculations with NLO13 YN interactions



 Calculations by the München group: "Hyperon-nucleon three-body forces and strangeness in neutron stars", Gerstung, Kaiser, and Weise, E.P.J. 56, 175 (2020). NLO13 YN interactions



> Critical point depends on μ_N .

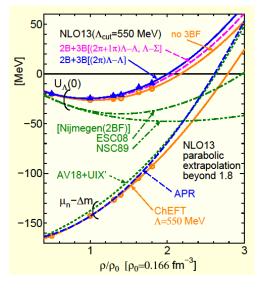
Λ single particle potential with ΛNN 3BFs in neutron matter

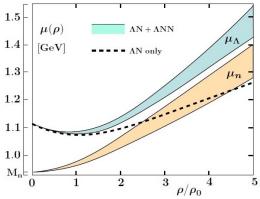
- G-matrix calculations in pure neutron matter involving densitydependent two-body interactions normal-ordered from Λ NN and Λ NN- Σ NN 3BFs (2π exchange).
 - > Hyperon puzzle is resolved?
 - > Large uncertainties even in the sign of the coupling constants.
 - > The results would change when either NLO19 or NNLO is employed.
- Necessary to improve YN and YNN interactions
 - Experimental data

Hypertriton, direct YN scattering, and momentum correlation function

Theoretical studies

Higher orders and parameters in ChEFT and/or Lattice data Precise (ab initio) calculations of (light) hypernuclei





Scenarios that could solve the hyperon puzzle

- Repulsive YN and YY interactions (e.g., by ϕ meson exchange)
 - > Difficult to explain hyper nuclei.
- Repulsive effects of 3 baryon forces (YNN, YYN, YYY)
 - > It is easy to introduce phenomenological 3BFs, but not so different from the use of the ad hoc EoS ρ^{α} .
 - > It is preferable to start with bare YN and YNN interactions.
- Phase transition to quark matter (hybrid star)
 - > It is sufficient if the appearance of hyperons is suppressed before the phase change occurs.
 - > EoS of the quark matter depends on the model.
- Δ -isobar and/or Kaon condensation ? They, in general, make the matter soft.

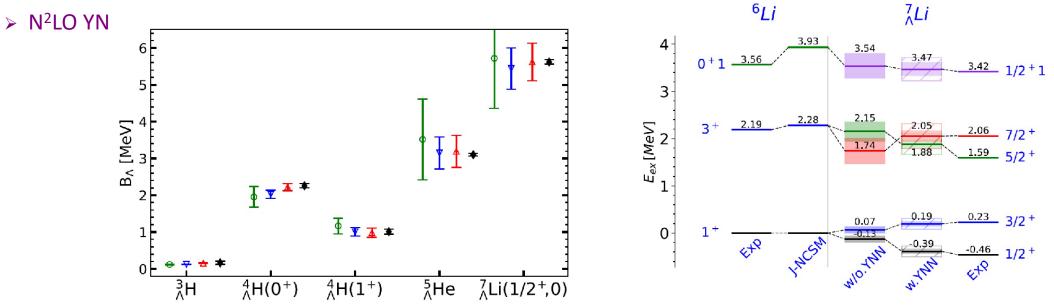
≻ ∆ puzzle

Presence of dark matter ?

> Studies based on knowledge of terrestrial hypernuclear data are important.

No-core shell model calculations of light hypernuclei (Jülich group)

- "Benchmarking three-body forces and first predictions for A=3-5 hypernuclei"
 Le, Haidenbauer, Kamda, Kohno, Meißner, Miyagawa, and Nogga, Eur. Phys. J. A. (2025) 61:21
- "Light Hypernuclei Studied with Chiral Hyperon-Nucleon and Hyperon-Nucleon-Nucleon Forces"
 Le, Haidenbauer, Meißner, and Nogga, Phys. Rev. Lett. 134, 072502 (2025)
- > 3BF parameters: decouplet-saturation model + small adjustment



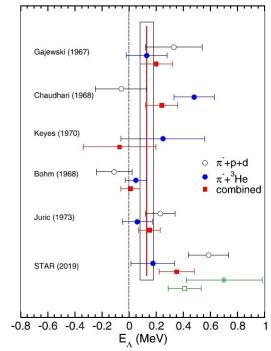
$\Lambda\textsc{-}deuteron$ correlation function calculated in Faddeev formulation

The energy of the hypertriton, the lightest bound state, has not been pinned down yet. the current world average of the binding energy of ${}^{3}_{\Lambda}$ H is 164 ± 43 keV

[P. Eckert *et al.,* Chart of hypernucleids Hypernuclear Structure

and Decay Data, 2023, https://hypernuclei.kph.uni-mainz.de.]

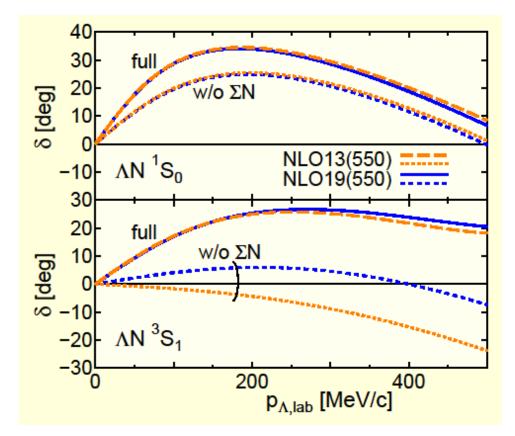
- The spin of the hypertriton is J = 1/2.
- The energy calculation does not determine the ration of ${}^{3}V_{\Lambda N}/{}^{1}V_{\Lambda N}$.
- The spin J = 3/2 state participate in the scattering process.
- Experiments of the Λ -deuteron scattering are not expected at present.
- The recent advancements of the measurement of the Λd correlation functions provide an alternative source of the information.
- The Λ -deuteron three-body system is calculated in Faddeev formulation.



Two-body ΛN scattering phase shifts: ${}^{1}S_{0}$ and ${}^{3}S_{1}$ channels

- The difference between NLO13 and NLO19
 - NLO13: J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, Nucl. Phys. A 915, 24 (2013).
 - NLO19: J. Haidenbauer, U.-G. Meißner, and A. Nogga, Eur. Phys. J. A 56, 91 (2020).

- NLO13 and NLO19 provide same phase shifts both in ¹S₀ and ³S₁ despite of the difference in their ΛN-ΣN coupling strength.
 - > Switching off the $\Lambda N-\Sigma N$ coupling, the ${}^{3}S_{1} \Lambda N$ interaction becomes repulsive in NLO13.



Low-energy Λ -deuteron scattering phase shifts: J = 1/2 and J = 3/2

■ *J* = 1/2

> Because of the constraint that ${}^{3}_{\Lambda}$ H is bound, NLO13 and NLO19 predict same phase shifts.

J = 3/2

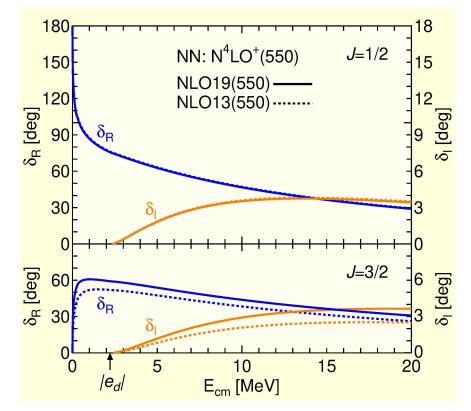
- > ³S₁ of NLO19 is more attractive than that of NLO13
- > The behavior at $E_{cm} \approx 0$ suggests a pole (virtual state) close to the real axis.

NLO13: k = -0.08i fm⁻¹ (E = -0.17 MeV)

NLO19: k = -0.05i fm⁻¹ (E = -0.07 MeV)

Due to the total isospin T=0, ${}^{1}S_{0}$ *np* does not participates, therefore δ_{I} is small.

NN interactions: chiral N⁴LO⁺(550)



Λ -deuteron correlation function with elastic wave function

$$C_{\Lambda d}^{J}(k) = 1 + 4\pi \int_{0}^{\infty} r^{2} dr S_{12}(r) \left\{ \left| \psi_{J}(k;r) \right|^{2} - |j_{0}(kr)|^{2} \right\}$$

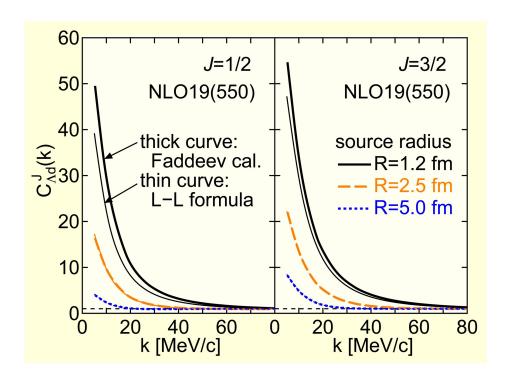
source function with range R: $S_{12}(r) = \frac{1}{(2\sqrt{\pi}R)^3} \exp\left(-\frac{1}{4R^2}r^2\right)$

wave function in *r*-space from the calculated *T*-matrix $\psi_{\ell}(k;r) = j_0(kr) + \frac{2\mu_{\Lambda d}}{\hbar^2} \int_0^\infty k'^2 dk' \frac{j_{\ell}(k'r)T_{2,\ell}(k',k)}{k^2 + i\eta - k'^2}$

Lednicky-Lyuboshits formula [Sov. J. Nucl. Phys. 35, 770 (1982)]

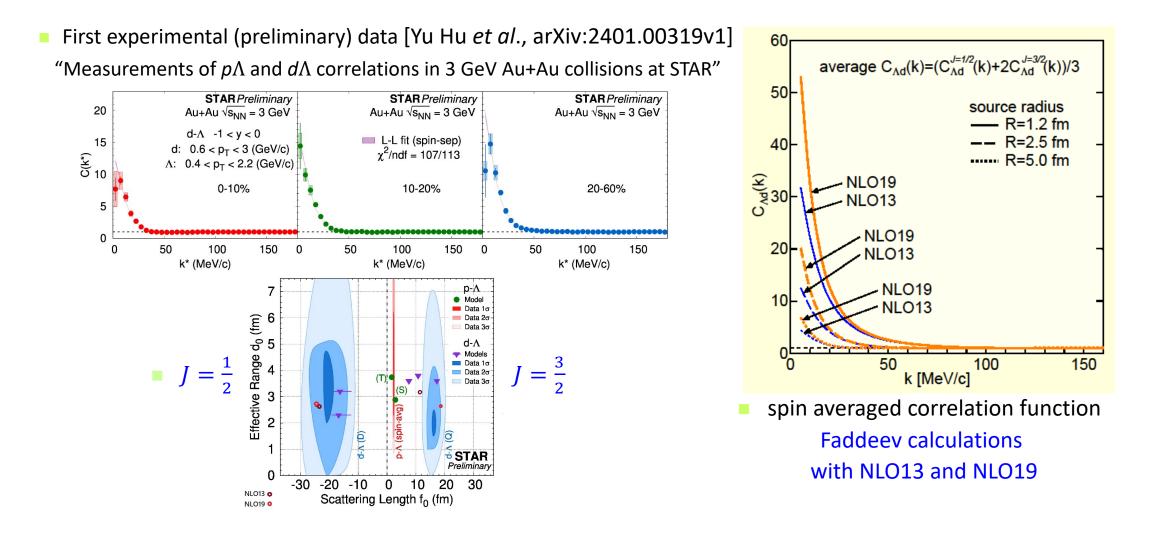
$$C_{\Lambda d}^{J}(k) \approx 1 + \frac{\left|f_{J}(k)\right|^{2}}{2R}F(r_{0}) + \frac{2\operatorname{Re}f_{J}(k)}{\sqrt{\pi}R}F_{1}(x) - \frac{\operatorname{Im}f_{J}(k)}{R}F_{2}(x)$$
$$F(r_{0}) = 1 - \frac{r_{e}}{2\sqrt{\pi}R}, F_{1}(x) = \frac{\int_{0}^{x} dt \ e^{t^{2} - x^{2}}}{x}, F_{2}(x) = (1 - e^{-x^{2}})/x$$

scattering amplitude $f_j \approx \frac{1}{-\frac{1}{a_s} + \frac{1}{2}r_ek^2 - ik}$



Results of Faddeev cal. and L-L formula are undistinguishable for R = 1.2 fm, 1.5 fm .

 Λ -deuteron spin-averaged correlation function



Correlation function R(q) (S. Mrówozyńsky [Eur. Phys. J. Spec. Top. 229, 3559(2020)])

$$R(q) = \iiint dr_{\Lambda} dr_{n} dr_{p} D(r_{\Lambda}) D(r_{n}) D(r_{p}) |\psi_{\Lambda np}(r_{\Lambda(np)}, r_{np})|^{2} / \iint dr_{n} dr_{p} D(r_{n}) D(r_{p}) |\varphi_{d}(r_{np})|^{2}$$
$$\psi_{\Lambda np}(r_{\Lambda(np)}, r_{np}) \xrightarrow[|r_{\Lambda(np)}|, |r_{np}| \to \infty]{} e^{iq_{0} \cdot r_{\Lambda(np)}} \psi_{d}(r_{np})$$
$$= \text{ source function } D(r) = D(r; R_{s}) \equiv (\sqrt{2\pi}R_{s})^{-3} e^{-r^{2}/(2R_{s}^{2})}, D(r)$$

 $R(q) = \iint d\boldsymbol{r}_{\Lambda(np)} d\boldsymbol{r}_{np} D(r_{\Lambda(np)}; \sqrt{3/2}R_s) D(r_n; \sqrt{2}R_s) |\psi_{\Lambda np}(\boldsymbol{r}_{\Lambda(np)}, \boldsymbol{r}_{np})|^2 / \int d\boldsymbol{r}_{np} D(r_{np}; \sqrt{2}R_s) |\varphi_d(\boldsymbol{r}_{np})|^2$

Supposing the deuteron is an elementary particle $\psi_{\Lambda np}(r_{\Lambda(np)}, r_{np}) = \psi_{\Lambda d}(r_{\Lambda d})\varphi_d(r_{np})$,

 $R(q) = \int d\mathbf{r}_{\Lambda d} D(\mathbf{r}_{\Lambda d}; \sqrt{3/2}R_s) |\psi_{\Lambda d}(\mathbf{r}_{\Lambda d})|^2 \quad (\text{note that the range is } \sqrt{3/2}R_s \text{ instead of } \sqrt{2}R_s)$

Assume that the Λd relative wave function differs from the plane $e^{i q_0 \cdot r_{\Lambda d}}$ only in the s wave,

$$\psi_{\Lambda np}(\boldsymbol{r}_{\Lambda(np)}) = e^{i\boldsymbol{q}_{0}\cdot\boldsymbol{r}_{\Lambda d}} - j_{0}(\boldsymbol{r}_{\Lambda d}) + \psi_{\Lambda d}^{l=0}(\boldsymbol{r}_{\Lambda d})$$
$$R(\boldsymbol{q}) \cong 1 + 4\pi \int r_{\Lambda d}^{2} d\boldsymbol{r}_{\Lambda d} D(\boldsymbol{r}_{\Lambda d}; \sqrt{3/2}R_{s}) \{|\psi_{\Lambda d}^{l=0}(\boldsymbol{r}_{\Lambda d})|^{2} - |j_{0}(\boldsymbol{r}_{\Lambda d})|^{2}\}$$

> When $\psi_{\Lambda d}^{l=0}(r_{\Lambda d})$ is described by effective range parameters, L-L formula is obtained.

Correlation function R(q) (S. Mrówozyńsky [Eur. Phys. J. Spec. Top. 229, 3559(2020)])

In the case of $\psi_{\Lambda np}(\boldsymbol{r}_{\Lambda(np)}, \boldsymbol{r}_{np}) \neq \psi_{\Lambda d}(\boldsymbol{r}_{\Lambda d})\varphi_d(\boldsymbol{r}_{np})$

 $R(q) = \iint d\boldsymbol{r}_{\Lambda(np)} d\boldsymbol{r}_{np} D(\boldsymbol{r}_{\Lambda(np)}; \sqrt{3/2}R_s) D(\boldsymbol{r}_n; \sqrt{2}R_s) |\psi_{\Lambda np}(\boldsymbol{r}_{\Lambda(np)}, \boldsymbol{r}_{np})|^2 / \int d\boldsymbol{r}_{np} D(\boldsymbol{r}_{np}; \sqrt{2}R_s) |\varphi_d(\boldsymbol{r}_{np})|^2$ source function $D(r) = D(r; R_s) = (\sqrt{2\pi}R_s)^{-3} e^{-r^2/(2R_s^2)}$

Supposing that only the s-wave is altered from the plane wave $e^{i q_0 \cdot r_{\Lambda d}}$

 $R(q) \times \int d\mathbf{r}_{np} D(r_{np}; \sqrt{2}R_s) |\varphi_d(\mathbf{r}_{np})|^2$ $\cong 1 + (4\pi)^2 \iint r_{Ad}^2 dr_{Ad} r_{np}^2 dr_{np} D(r_{Ad}; \sqrt{3/2}R_s) D(r_{np}; \sqrt{2}R_s) (|\psi_{Anp}(r_{Ad}, r_{np})|^2 - |j_0(r_{Ad})|^2 |\varphi_d(\mathbf{r}_{np})|^2)$

The source radius is different between r_{np} and $r_{\Lambda d}$. $(r_{\Lambda d} \text{ is not } \sqrt{2}R_s \text{ , but } \sqrt{3/2}R_s)$

Three-body wave function in Faddeev formulation

- For incident Λd wave ϕ , full wave function $\Psi^{(+)} = \lim_{\epsilon \to 0} i\epsilon \frac{1}{E + i\epsilon H} \phi = \Psi_1^{(+)} + \Psi_2^{(+)} + \Psi_3^{(+)}$ $H = H_0 + V_{12} + V_{23} + V_{31}$ (H_0 kinetic energy in the CM system)
- Rewriting $(H_0 + V_1 + V_2 + V_3 E)\Psi^{(+)} = 0$ to $\Psi^{(+)} = G_0(V_1 + V_2 + V_3)\Psi^{(+)}$ $\left[G_0 = \frac{1}{E H_0}\right]$
- $u_3 |\phi\rangle \equiv (V_{31} + V_{23}) |\Psi^{(+)}\rangle$ and introducing two-body *t*-matrix t_3 (i = 3 is assigned to Λ) Faddeev equation becomes $u_3\phi = (1 - P_{12})t_2G_0u_2\phi$, $u_2\phi = G_0^{-1}\phi + t_3G_0u_3\phi - P_{12}t_2G_0u_2\phi$ Introducing $T_i \equiv t_iG_0u_i$, then $T_3\phi = t_3G_0(1 - P_{12})T_2\phi$, $T_2\phi = t_2\phi + t_2G_0T_3\phi - t_2P_{12}G_0T_2\phi$
- Inserting complete set of the plane wave $|\phi_0\rangle\langle\phi_0| = 1$, the wave function is written as $\langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | \Psi^{(+)} \rangle = \langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | G_0 | \phi_0 \rangle \langle \phi_0 | V_{12} + V_{23} + V_{31} | \Psi^{(+)} \rangle$ $= \langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | G_0 | \phi_0 \rangle \langle \phi_0 | G_0^{-1} + 2T_2 + T_3 | \phi \rangle$ $= \langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | \phi \rangle + \langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | G_0 | \phi_0 \rangle \langle \phi_0 | 2T_2 + T_3 | \phi \rangle$

Wave function in the incident channel

• Λd incident channel: $\langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | \Psi_3^{(+)} \rangle = \langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | \phi \rangle + \langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | G_3 | \phi_0 \rangle \langle \phi_0 | 2T_2 | \phi \rangle$

> channel Green function $G_3 = \frac{1}{E - H_0 - V_{12}}$ $(V_{12} = V_{np})$

> To explicitly evaluate $\langle r_{\Lambda(np)}, r_{np} | G_3 | \phi_0 \rangle$, the eigen functions $| \Phi \rangle$ of $H_0 + V_3$ are used.

 $\Rightarrow \langle \mathbf{r}_{\Lambda(np)}, \mathbf{r}_{np} | G_3 | \Phi \rangle \langle \Phi | \phi_0 \rangle \quad \text{(note that wave function } \langle \Phi | \phi_0 \rangle \text{ is a generalized function)}$

• Spectral representation of the Green function (s-wave) $[|\Phi\rangle\langle\Phi| = |\Phi_d\rangle\langle\Phi_d| + |\Phi_{scat}\rangle\langle\Phi_{scat}|]$

$$\langle r_{\Lambda(np)}, r_{np} | G_3 | \Phi_d , \Phi_{scat} \rangle *= \int q^2 dq \frac{\varphi_d(r_{np}) j_o(qr_{\Lambda(np)})}{E + |e_d| - \frac{\hbar^2}{2\mu_{\Lambda np}} q^2 + i\mathcal{E}} *, \qquad \frac{2}{\pi} \iint p^2 dp \, q^2 dq \, \frac{\psi_p(r_{np}) j_o(qr_{\Lambda(np)})}{E - \frac{\hbar^2}{2\mu_{\Lambda np}} p^2 - \frac{\hbar^2}{2\mu_{\Lambda np}} q^2 + i\mathcal{E}} *$$

 $\Rightarrow \varphi_d(r_{np})$ and $\psi_p(r_{np})$: bound state and scattering state wave functions of $T_3 + V_{12}$

> Φ_d term corresponds to the elastic and the second term describes breakup in this channel

Contributions of deuteron breakup

Using three-body wave functions calculated by Faddeev equations

Incident channel breakup contributions are negligible and rearrangement channel breakup is small.

