
Properties of hyperons in nuclear matter with baryon-baryon interactions 
constructed in chiral effective field theory

Michio Kohno, RCNP Osaka University

n baryon-baryon interactions in chiral effective field theory (ChEFT)

n Chiral symmetry

n Construction (parametrization) of baryon-barton interactions

n three-body forces

n ΛN and ΛNN interactions

n Properties of Λ in the nuclear medium (symmetric nuclear matter)

n 3-body forces in hypertriton and Λ-deuteron correlation functions 
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NN interactions and Three-body forces (induced many-body forces）

n Instantaneous B-B potentials are derived through the elimination of various degrees of freedom, 
such as mesons and baryon excited states.

Ø In principle, by unitary transformation. 
Ø No problem for on-shell properties in a two-body system.

Ø Unitary transformation induces many-body forces in many-baryon systems. 

n Low-momentum interactions in model space P.

Ø Correlations involving states in Q-space are eliminated.

Ø Many-body interactions manifest in model space P.

(induced three-body interaction)

n In ChEFT, the chiral symmetric Lagrangian of nucleons and pions is

    determined in low-momentum space (power counting). The pions are subsequently eliminated.
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Construction of (instantaneous) NN interactions

n Eliminate other degrees of freedom than nucleons by a unitary transformation.

   [Okubo, PTP12 (1954), Taketani-Machida-Ohnuma, PTP7 (1954)]
   [Epelbaum, arXiv:1001.3229 “Nuclear forces from Ch-EFT: a primer”]

   ! = #!# #!$
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Ø decoupling eq. &'( + &'&* − *('( − *('&* = 0                                                                              
is solved perturbatively. Time-ordered perturbation.
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n The unitary transformation induces many-body forces in many-nucleon space.

n Calculations of Feynman diagrams directly provide the Born amplitudes of the corresponding 
potential. 
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n Before QCD

n PCAC: axial-current conservation implies (chiral) symmetry

n Pion is not chirally invariant. Pion is a Nambu-Goldstone due to the spontaneous breaking of the chiral 
symmetry. [chiral transformation (ch-x) &#$%#] 

n Effective model such as linear )-model: (+, )) where +& + )& is invariant under ch-x.

n QCD: ℒ*+, = 56 78-9- −ℳ 6 − %
);-.,0;0

-., small mass term ℳ =
!! 0 0
0 !" 0
0 0 !#

Ø ℒ'()* = 1234+5+2 −
,

-
7+.,070

+. = 12134+5+21 + 12234+5+22 −
,

-
7+.,070

+.

2 = ,

&
1 + 43 + ,

&
(1 − 43) 2 ≡ 21+22       (SU #

$ R×SU #
$ L)

n The proposal by Weinberg (1979): consider an effective model with a general chiral-symmetric 
Lagrangian instead of specific models.

Chiral symmetry

!! ≅ 2.5 MeV, 
!" ≅ 5 MeV,
!# ≅ 101 MeV
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n flavor SU(3)×SU(3) : octet baryons and pseudoscalar (ps)  mesons
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n Meson-Baryon coupling

:& = &;< 3 2>/@*
A+B = C+B +

1
2 :4C+: + :C+:4 , B , 	 :+ = 3 :4C+: − :C+:4

ℒ566 = tr 1B(34+A+ −F*)B −
A
2 tr

1B4+43 :+ 	, B +
−
G
2 tr

1B4+43[:+ 	, B]

Ø Low-energy effective theory: expansion in terms of P and non-relativistic approx.

5

Chiral-invariant Lagrangian for meson-baryon coupling



NN, !NN contact, !NN, and !!NN Lagrangian

n NN and =NN contact terms that describe the physics beyond the cutoff scale.
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n =NN, and ==NN up to two-derivative terms of the pion field

      ℒ788 = JK 3C* −
9$
&:%

L M N M O + − )

-:%"
L M (+×C*+) K

                 +JK	Q ,

&5&
O& − #9$

-5&:%
L M N M OC*+ − C*+O R− #

;5&:%"
L M [O M +×S+ − +×S+ M O] K

                 +JK Q4U,V7
& − &<!

:%"
V7
&+& + U& −

9$
"

;5&
,

:%"
C*+ M W=+ 	

                                                      R	 + <'
:%"

C++ M W>+ + U- +
,

-5&
,

&:%"
X#?@X0A<)#Y0(C?(A)(C@(<) K

Ø Parameters are fitted by analyzing (K scattering data.
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Feynman diagrams in each chiral order !	 (power counting）

Exclude a NN
intermediate
state  

Z = 1	is absent  

Z = 0  

Z = 2  

Z = 3  

Z = 4  

n N2LO can fit the scattering 
data well. 

Ø (N5LO parametrization is 
present.)  

n The number of parameters 
is about 30 at N2LO.

Ø The parametrization that 
incorporates the Isobar Δ 
in the Feynman diagrams 
is also attempted.



Power counting

n The guideline to derive a potential.

                             power counting, Weinberg (1979)

n Feynman diagrams are organized in according to the order Z of the low-momentum ^ (low-
momentum scale ^/Λ .):  the expansion in terms of Z

n Diagrams consisting exclusively of nucleons are excluded from consideration. They are included 
in solving the Lippmann-Schwinger equation after constructing the potential.

    (It is not possible to describe a bound state by perturbation.)

n > is given by > = 2@ + ∑1(C1 +
2*
$ − 2), where 7 specifies a vertex, C1	(E1) is the number of the 

derivative at the vertex (nucleons), and @ is the number of loops.

 （In the case of 3BF, > = 2 + 2@ + ∑1(C1 +
2*
$ − 2)）
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example： next-to-leading order (NLO) ! = 2

n Typical example of > = 2@ + ∑1(C1 +
2*
$ − 2) = 2 diagram

The diagram with 3 vertices (E%,$,3 = 2, C%,$,3 = 1) and 1 loop (@ = 1) 

   corresponds to two-pion exchange.
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n Example of > = 3 two-pion exchange (@ = 1) loop diagram
    The diagram with one vertex of E = 2, C = 2	and two vertices of E = 2, C = 1.
   (low-energy constants 2%, 23, and	2) emerge, which contribute to 3BFs.)
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Leading order (NNLO) 3-nucleon forces (explicit expression)

 

                                                                                     L1 = M1′ − M1,    Λ4 = 700 MeV  

     .35
($7) = ∑19:9;
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Ø Subleading-order 3NF’s have been worked out beyond N2LO.

È8
(&7)

È8
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n 2%, 23, and	2) are determined in the 
two-body sector

n 2,	and	2( are new and (usually) 
fitted in few-body systems. 

f# 	 fK	 fL

f#′	 fK′	 fL′



3BF contribution in view of Pauli blocking

n Typical 3-BF： Fujita-Miyazawa type Δ-excitation

n Δ-excitation is important in two-body
correlations      attractive contribution

Ø This effect is implicitly taken care of, when

     an NN potential is parametrized.

n Δ-excitation is Pauli-blocked (partly) in the nuclear medium,

    but this effect cannot be treated by the parametrized NN potential.

n The Pauli-blocking effect is taken care of by including 3BFs.
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3BF (c1, c2, and c4) contributions to the  saturation curve in SNM

n LOBT calculations in symmetric nuclear matter.

Ø Nuclear saturation can not be reproduced when only two-
body interactions are considered. 

Ø Calculations using chiral N3LO interactions.
Ø Off-shell properties are different, although on-shell properties 

are nearly equivalent.

n Contributions of 3BFs (normal-ordered density dependent 
two-body interactions), their parameters of which are 
determined in the two-body sector, are repulsive at high 
densities.

Ø To reproduce the empirical saturation point, the values of the 
contact parameters (U) and UJ) are adjusted, which may be 
different from those for light nuclei. 

13



Attractive and repulsive contributions of 3NFs in nuclear matter

n Tensor component in 3S1 is enhanced by 3NFs       attractive contribution in 3S1 channel. 

n Δ-excitation processes in 1S0 and 3PJ channels are Pauli blocked        repulsive contribution.

Ø The repulsive contribution in the 3PJ channel is large.
Ø The repulsive contribution in the 1S0 channel is small.
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Λ' potentials

n Before 2000: OBEP by Nijmegen group, quark model by Kyoto-Niigata group, and others
n Advancement of the description of KK interactions in chiral effective field theory

n Based on the chiral symmetry and its spontaneous breaking pattern
n Systematic introduction of many-body forces consistent with two-body parameters
n Possibility of estimating the range of uncertainty

n ChEFT KK interactions are now standard for studying nuclear structures and reactions

n Parametrization of the interaction of the strangeness sector in ChEFT by Jülich-Bonn- München group
n NLO13:  "Hyperon-nucleon interaction at next-to-leading order in chiral effective field theory,‘’
                      Haidenbauer, Petschauer, Kaiser, Meißner, Nogga, and Weise, Nucl. Phys. A915, 24 (2013).
n NLO19:  “Hyperon-nucleon interaction within chiral effective filed theory revisited”,

           Haidenbauer, Meißner, and Nogga, Eur. Phys. J. A (2020) 56:91.
n NNLO: "Hyperon-nucleon interaction in chiral effective field theory at next-to-next-to-leading order,‘’
                    Haidenbauer, Meißner, Nogga, and Le, Eur. Phys. J. A (2023) 59:63.

n The parametrization based on Lattice data is not available for quantitative studies.
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Leading-order SUf(3) invariant MBB coupling

n Leading-order SUf(3) invariant MBB coupling Lagrangian

ℒ, = −
2

2@*
tr A 1B4+43 C+>, B + G 1B4+43[C+>, B]

Explicit  expression:

ℒ% = −Y557 Z[8-8KX[ U \-] + 7YLL7Ẑ8-8K×^ U \-] − YMM75Ξ8-8KXΞ U \-]
−YHL7 ZΛ8-8K^ + Ẑ8-8KΛ U \-] − YH5N[ Z[8-8KΛ\-a + ZΛ8-8K[\-aO]

−YMHN 5Ξ8-8KΛ\- Za + ZΛ8-8KΞ\- ZaO − YL5N[Ẑ8-8K\-aOX[ + Z[8-8KX\-a U ^]
−YMLN Ẑ8-8K\- ZaOXΞ + 5Ξ8-8KX\- Za U ^ − Y55P: Z[8

-8K[\-c
−YHHP:ZΛ8

-8KΛ\-c − YLLP:^ U 8
-8K^\-c −YMMP: 5Ξ8

-8KΞ\-c

SUf(3) relations

 aB = G + A ≅ 1.26, 	s = G/(G + A),   @887 = @ = 9$
&M%

, 	 @NN7 = − 1 − 2s @,	

 @O8P = − ,

E
1 + 2s @, @OQ7 =

&

E
1 − s @, @QQ7 = 2s@, @Q8P = 1 − 2s @, ⋯
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Strangeness S = −1: Leading-Order in ChEFT

Ø H. Polinder, J. Haidenbauer, and U.-G. Meißner, Nucl. Phys. A779, 244 (2006)

n Contact terms without derivative, and one pseudoscalar-meson (=, a, c) exchange

n Leading-order SUf(3) invariants ℒQQQQ = 21 5dΓ1d 5dΓ1d +⋯ 
                                                                           [ Γ, = 1,	 Γ&= 4+ , ΓE = )+. , Γ- = 4+43, Γ3 = 43 ]
    Non-relativistic reduction gives

       ℒ;;;; = ∑%&<=>0
$ {;''

0 )%&)&< )<=)=% + ;''
# )%&<)&< = )<=<)=% + ;''

$ )%&)<= )&<)=%
+;''

- )%&<)<= = )&<<)=% + ;''
. )%&)&% )<=)=< + ;''

? )%&<)&% = )<=<)=< }

l In YN (f = −1) at LO, there are 5 S-wave contact low-energy constants

l （ 2RR1 are reorganized） g%SRH5'H5, g3S%H5'H5, g%SRL5'L5, g3S%L5'L5, g3S%H5'L5

n One ps-meson exchange potential is familiar (OBEP)

          .Q@Q3→QAQ5 = −YQ@QAUYQ3Q5U
(>@?@)(>3?@)
@3ABB

3 ×[isospin factor]

Ø SU3 relations are used for coupling constants YQ@QAU.

v	 K

v	 K

!, 6, 5
@

v	 K
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Strangeness S = −1: Next-to-Leading-Order in ChEFT

Ø Haidenbauer, Petschauer, Kaiser, Meißner, Nogga, and Weise, Nucl. Phys. A915, 24 (2013). 

n Contact terms with one derivative, and two-ps-meson exchange

n NLO contact terms（low-energy constants: 8 in s-wave and 10 in p-waves）
6̀6→66
(&) = w,x& + w&y& + (wEx& + w-y&) N, M N& +

3
2w3 N, + N& M x×y

                    +wS(N, M x)(N& M x) + wT(N, M y)(N& M y) +
#

&
w;(N, − N&) M (x×y)

n Leading-order SUf(3) invariant MMBB coupling Lagrangian            ℒ& =
,

-:("
z{ 3 1B4+[ >, C+> , B

Ø Experimental data is insufficient to go to higher orders (NNLO, N3LO, …)

                                         NLO diagrams                                                                           NNLO diagrams
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3-baryon interactions in SU(3) chiral effective field theory

Ø Petschauer, Kaiser, Haidenbauer, Meißner, Weise, P. R. C93, 014001 (2016)

n Leading 3-baryon diagrams

 diagrams with the power > = 2 + 2@ + ∑1(C1 +
2*
$ − 2) = 3

(C1	and	E1 are the number of derivatives and baryon fields, respectively, at the vertex 7,
    and @ is the number of loops.)

n Exchanged-meson h is =, a, or	c,
depending on the baryon B. 

Ø Various combinations for exchanged mesons are possible,
    therefore, calculations are complicated.

B4 B5    B6           B4  B5     B6          B4 B5   B6

      h1	 h2	 h

B1 B2    B3           B1 B2     B3          B1 B2   B3
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ΛNN 3-baryon interaction with pion exchange

n ΛNN interaction with 2= exchange（no =ΛΛ	vertex, but	==ΛΛ is present）
.35
($7) = <2

3

3#45
(>C?@C)(>1?@1)

(@A3AB4
3)(@C3AB4

3) (Q$	U Q3)[− 3qR + q, T7
$ + (2q$ + 3q))LV U LW]

n It is not possible, at present, to determine NNLO coupling constants                           

    by experimental data.

n Petschauer et al. [Nucl. Phys. A957, 347 (2017)] estimated coupling

    constants by the decouplet saturation model.
      

                                   =                   +

n 1= exchange and contact ΛNN 3-baryon interaction

                            =	 +

N Λ      N

=	 =

   2       1       3
N Λ      N
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Λ' interactions in the nuclear medium

n Medium effects

① Dispersion relation: potential insertion to the propagator
② Pauli effects for ΛK − ΛK correlation and ΛK − ΣK coupling

Ø tensor force is weak in ΛK − ΛK because of no one-pion exchange, but strong in ΛK − ΣK.
③ Three-body forces

n ① and ② are taken care of by G-matrix equation

n 3BFs are incorporated by the normal-ordered prescription
     (density-dependent effective two-body interaction)

}~ �,&(E) Ud B
≡ ,

&
∑X }~ℎ �,&E Udℎ B

Ø 1--exchange and contact terms are excluded.
    (coupling constants are uncertain even in sign.) 
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Neutron star matter and hyperons: hyperon puzzle

n Conventional knowledge of attractive Λ-N interactions from the experimental data of 
hypernuclei           Λ hyperons appear in high-density neutron star matter to avoid the 
increase of the neutron chemical potential.

Ø  Even the standard neutron stars with the mass of 1.45⨀ cannot be supported.

n To make the matter worse, heavy neutron stars were observed.
Ø PSR J1903+0327 (1.667 ± 0.021	5⨀), PSR J1614-2230 (1.928 ± 0.017	5⨀),

    PSR J0348+0432 (2.01 ± 0.04	5⨀), PSR J0740+6620 (2.14/0.0120.30	5⨀)

Ø Observation of binary NS merger GW170817 suggests that maximum mass is 2.3 − 2.4	5⨀

n To understand heavy neutron stars, the EoS of neutron star matter has to be hard.
Ø Appearance of  hyperons in neutron star matter is unfavorable: hyperon puzzle
Ø Appearance of Δ	isobars is unfavorable: Δ puzzle
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Neutron stars 

n NS with a small mass 
and a compact size

X = 0.77*+.-./+.0+X⨀	,	

     ^ = 10.4*+..2/+.23 km

Ø  Doroshenko et al., Nature  
Astron. 6, 1444 (2022)]
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blocking of ! excitation (MeV)

"*/2 "* 3"*/2 2"*
+0.52 +1.83 +3.58 +5.53

blocking of !* excitation (MeV)

"*/2 "* 3"*/2 2"*
+0.80 +3.79 +9.48 +18.11

Heuristic 2nd order calculations

n Pauli blocking effect for the Σ∗ excitation in the nuclear medium (pure neutron matter)
           (Attractive contribution of the Σ∗ excitation in free space is suppressed in the nuclear medium)

n coupling constants used  (vertex form factor '! ^/O " with Λ = 0.96 GeV)
     .788 = 12.677, 	.7OQ = 12.677, 	 .P8O = −11.448, 	.P8Q = 0.7032, 	 6P8Q∗ = −3.22, 67OQ∗ = 1.106

                 included in G-matrix calculations not included in G-matrix calculations
Ø Single-particle potentials are included for N, Λ, and Σ propagators
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Heuristic 2nd order calculations

Λ h
      =
   Σ        N
      =
Λ h

Λ h
      =
   Σ∗      N
      =
Λ h
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n Repulsive contribution of three-body forces with the Σ∗ intermediate excitation is expected to be large, in 
addition to the Pauli blocking effect for the ΛN − Σ8 coupling.

N  h
      =
   ∆        N
      =
N        h



Density dependence of ,9 0 in symmetric nuclear matter (NLO13) 

n LOBT calculations in symmetric nuclear matter (SNM)

n 3BF contributions are attractive in the 3S1-state (as in the case of 3NFs) and repulsive in P-states

n :O 0 ~ − 30 MeV is reasonable, compared with the empirical single-particle potential depth.
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Density dependence of ,9 0 in symmetric nuclear matter (NLO19) 

n No difference in P waves between NLO13 and NLO19

n The 3S1 attraction of NLO19 is larger than that of NLO13, despite the weaker the ΛN − Σ8 coupling
Ø Note that the 3BF parameters are same for NLO13 and NLO19 
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n Calculations by switching off the ΛN-ΣN coupling

Ø The coupling strength is model-dependent (not observable)
Ø The coupling is stronger in NLO13 than in NLO19.
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Λ N
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   Σ        N
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Λ N

Λ N
      K
  N        Σ
      K
Λ N

Role of ΛN-ΣN coupling (ChEFT interactions)



n Calculations by switching off the ΛN-ΣN coupling

Ø The coupling strength is model-dependent (not observable)
Ø The coupling is strong in NLO13 and NSC97, relatively weak in fss2 (and NLO1).
Ø In the nuclear medium, ΛN-ΣN coupling is partly Pauli blocked.
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Role of ΛN-ΣN coupling 



Λ chemical potential in neutron star matter

30

n M. Kohno, Phys. Rev. C97, 035206 (2018)
      calculations with NLO13 YN interactions

n Calculations by the München group:
     “Hyperon-nucleon three-body forces and
     strangeness in neutron stars”, Gerstung,
     Kaiser, and  Weise, E.P.J. 56, 175 (2020).
     NLO13 YN interactions

Ø Critical point depends on <8.



Λ single particle potential with ΛNN 3BFs in neutron matter

n G-matrix calculations in pure neutron matter involving density-
dependent two-body interactions normal-ordered from ΛNN and
ΛNN-ΣNN 3BFs (2= exchange).

Ø Hyperon puzzle is resolved?
Ø Large uncertainties even in the sign of the coupling constants. 
Ø The results would change when either NLO19 or NNLO is employed.

n Necessary to improve YN and YNN interactions

Ø Experimental data
        Hypertriton, direct YN scattering, and momentum correlation function
Ø Theoretical studies
        Higher orders and parameters in ChEFT and/or Lattice data
        Precise (ab initio) calculations of (light) hypernuclei
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Scenarios that could solve the hyperon puzzle

n Repulsive YN and YY interactions (e.g., by h meson exchange)

Ø Difficult to explain hyper nuclei.

n Repulsive effects of 3 baryon forces (YNN, YYN, YYY)

Ø It is easy to introduce phenomenological 3BFs, but not so different from the use of the ad hoc EoS "`.
Ø It is preferable to start with bare YN and YNN interactions. 

n Phase transition to quark matter（hybrid star）
Ø It is sufficient if the appearance of hyperons is suppressed before the phase change occurs.
Ø EoS of the quark matter depends on the model.

n Δ-isobar and/or Kaon condensation？ They, in general, make the matter soft.

Ø Δ puzzle

n Presence of dark matter ?

Ø Studies based on knowledge of terrestrial hypernuclear data are important.
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n “Benchmarking three-body forces and first predictions for A=3-5 hypernuclei”
     Le, Haidenbauer, Kamda, Kohno, Meißner, Miyagawa, and Nogga, Eur. Phys. J. A. (2025) 61:21
n “Light  Hypernuclei Studied with Chiral Hyperon-Nucleon and Hyperon-Nucleon-Nucleon Forces”
     Le, Haidenbauer, Meißner, and Nogga, Phys. Rev. Lett. 134, 072502 (2025)
Ø 3BF parameters: decouplet-saturation model + small adjustment 
Ø N2LO YN
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No-core shell model calculations of light hypernuclei (Jülich group)



Λ-deuteron correlation function calculated in Faddeev formulation

n The energy of the hypertriton, the lightest bound state, has not been pinned down yet.

             the current world average of the binding energy of b
3H is 164 ± 43	keV

                      [P. Eckert et al., Chart of hypernucleids Hypernuclear Structure
                       and Decay Data, 2023, https://hypernuclei.kph.uni-mainz.de.]

n The spin of the hypertriton is x = 1/2.

n The energy calculation does not determine the ration of 3.H5/1.H5.

n The spin x = 3/2 state participate in the scattering process.

n Experiments of the Λ-deuteron scattering are not expected at present.

n The recent advancements of the measurement of the ΛC correlation

    functions provide an alternative source of the information. 

n The Λ-deuteron three-body system is calculated in Faddeev formulation.
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n The difference between NLO13 and NLO19

Ø NLO13: J. Haidenbauer, S. Petschauer, N. Kaiser, 
U.-G. Meißner, A. Nogga, W. Weise, Nucl. Phys. A 
915, 24 (2013).

Ø NLO19: J. Haidenbauer, U.-G. Meißner, and A. 
Nogga, Eur. Phys. J. A 56, 91 (2020).

n NLO13 and NLO19 provide same phase shifts both 

in 1S0 and 3S1 despite of the difference in their 

ΛN-ΣN coupling strength.

Ø Switching off the ΛN-ΣN coupling, the 3S1  ΛN 
interaction becomes repulsive in NLO13.

Two-body ΛN scattering phase shifts: 1S0 and 3S1 channels
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n # = 1/2
Ø Because of the constraint that 4

5H is bound, NLO13 
and NLO19 predict same phase shifts.

n # = 3/2	
Ø 3S1 of NLO19 is more attractive than that of NLO13

Ø The behavior at 367 ≈ 0 suggests a pole (virtual 
state) close to the real axis.

    NLO13: @ = −0.08A	fm-1 (3 = −0.17	MeV)
    NLO19: @ =− −0.05A fm-1 (3 = −0.07	MeV)

n Due to the total isospin T=0, 1S0 np does not 
participates, therefore )A is small.

Low-energy Λ-deuteron scattering phase shifts: / = 1/2	and / = 3/2
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n NN interactions: chiral N4LO+(550)



BDE
F C = 1 + 4!F

'

G

G# HGI0#(G) LF(C; G)
#
− N'(CG) #

source function with range >:  I0# G = 0

# ,H
$ exp − 0

-H% G
#

wave function in r-space from the calculated ?-matrix

Lℓ C; G = N'(CG) +
2RDE
ℏ#

F
'

G

CJ# HC′
Nℓ(CJG)U#,ℓ(CJ, C)
C# + V5 − C′#

n Lednicky-Lyuboshits formula [Sov. J. Nucl. Phys. 35, 770 (1982)]

!DEF " ≈ 1 + &F "
#

2( ) *' + 2Ref5 g
h^

i- j −
Im&F "

( )# -

W G' = 1 −
GL

2 !X
, W0 Y =

∫'
M
H[	]N

%)M%

Y
, W# Y = (1 − ])M

%
)/Y

scattering amplitude 6? ≈
,

!
!
67[

!
"b8@

"!#@

Λ-deuteron correlation function with elastic wave function
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n Results of Faddeev cal. and L-L formula are 
undistinguishable for > = 1.2 fm, 1.5 fm .



n First experimental (preliminary) data [Yu Hu et al., arXiv:2401.00319v1]
“Measurements of pΛ and dΛ correlations in 3 GeV Au+Au collisions at STAR”

Λ-deuteron spin-averaged correlation function

n spin averaged correlation function
Faddeev calculations

 with NLO13 and NLO19
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n B =
,

&
	 B =

E

&



Correlation function 1(3)（S. Mrówozyńsky [Eur. Phys. J. Spec. Top. 229, 3559(2020)]）

> C = DEFGOFGcFGd H IO H Ic H Ie |KOce(GO ce , Gce)|
& NFGcFGd	H Ic H Ie |Of(Gce)|

&

LDOP(_D OP , _OP) |R& '( |,|R'(|→G
]%T)UR& '( LE(_OP)

n source function H I = H(I; >g) ≡ ( 2R>g)
!E'! hb" (&19

"), H I  

( . = 0∬23D(OP)23OP	5 *D(OP); 3/2(X 5 *O; 2(X |:DOP(3D OP , 3OP)|# ∫23OP	5 *OP; 2(X |OE(3OP)|# 
n Supposing the deuteron is an elementary particle KOce GO ce , Gce = KOf GOi Of Gce , 

       > C = ∫FGOf 	H IOf; 3/2>g |KOf(GOi)|
&   （note that the range is 3/2>g instead of 2>g ）

n Assume that the ΛFrelative wave function differs from the plane '#j(kl:; only in the s wave,
KOce GO ce = '#j(kl:; − T* IOf + KOf

mn*(IOi) 
> C ≅ 1 + 4RWIOf

& FIOf 	H IOf; 3/2>g |KOf
mn* IOi |& − |T* IOf |&

Ø When KOf
mn*(IOi) is described by effective range parameters, L-L formula is obtained.
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Correlation function 1(3)（S. Mrówozyńsky [Eur. Phys. J. Spec. Top. 229, 3559(2020)]）

n In the case of zH2l {H 2l , {2l ≠ zHm({Hn)}m({2l)

( . = 0∬23D(OP)23OP	5 *D(OP); 3/2(X 5 *O; 2(X |:DOP(3D OP , 3OP)|# ∫23OP	5 *OP; 2(X |`E(3OP)|#

                                                                  source function H I = H(I; >g) = ( 2R>g)
!E'! hb" (&19") 

n Supposing that only the s-wave is altered from the plane wave ~1@!?oYZ

n The source radius is different between �2l and �Hm.（ �Hm is not 2Äp , but 3/2Äp）
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> C ×∫FGce	H Ice; 2>g |Of(Gce)|&

≅ 1 + 4R &NIof
& FIofIce

& FIce	H IOf; 3/2>g H Ice; 2>g (|KOce IOf , Ice |& − |T* IOf |&|Of(Gce)|
&)



Three-body wave function in Faddeev formulation

n For incident ΛC wave h, full wave function Ψ(A) = lim
q→R

7Ö %
(A1q'&h = Ψ%

(A) +Ψ$
(A) +Ψ3

(A)

Ø Y = Y* + Z,& + Z&E + ZE, （ Y* kinetic energy in the CM system)

n Rewriting ('R	+	.% + .$ + .3 − Ü)Ψ A = 0	 to Ψ(A) = áR(.% + .$ + .3)Ψ(A) áR =
%

('&!

n à3 ⟩|h ≡ (.3% + .$3) å|Ψ A and introducing two-body ç-matrix ç3 (7 = 3	is assigned to Λ)

Faddeev equation becomes C5D = (1 − E3,)F,G0C,D ,  C,D = G0/3D + F5G0C5D − E3,F,G0C,D
Introducing I8 ≡ F8G0C8, then I5D = F5G0 1 − E3, I,D,    I,D = F,D + F,G0I5D − F,E3,G0I,D

n Inserting complete set of the plane wave ⟩|hR éhR| = 1, the wave function is written as

KL4 9: , L9:| OΨ(2) = KL4 9: , L9:|G0 ⟩|D0 KD0|R3, + R,5 + R53 O|Ψ(2)

	 = KL4 9: , L9:|G0 ⟩|D0 KD0|G0/3 + 2I, + I5 ⟩|D
	 = KL4 9: , L9: ⟩|D + KL4 9: , L9:|G0 ⟩|D0 KD0|2I, + I5 ⟩|D
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Wave function in the incident channel 

n ΛF incident channel: ?3D OP , 3OP| @Ψ$(() = ?3D OP , 3OP ⟩|C + ?3D OP , 3OP|D$ ⟩|C' ?C'|2E# ⟩|C

Ø channel Green function [E =
,

J!p(!q!"
    (Z,& = Zce)

Ø  To explicitly evaluate \GO ce , Gce|[E ⟩|^* , the eigen functions ⟩|Φ of Y* + ZE are used.

        ⇒ \GO ce , Gce|[E ⟩|Φ ⟨Φ ⟩|^*     (note that wave function ⟨Φ ⟩|^* is a generalized function)

n Spectral representation of the Green function (s-wave)    [  ⟩|Φ ⟨Φ| = ⟩|Φf \Φf| + ⟩|Φg<0Z \Φg<0Z|  ]

aGD OP , GOP|c$ ⟩|ΦE	 , ΦX\]N ∗= Fg#Hg
`E(GOP)N̂ (gGD OP )

h + |]E| −
ℏ#

2RDOP
g# + Vℰ

∗ ,
2
!
j0#H0 g#Hg

LP(GOP)N̂ (gGD OP )

h − ℏ#
2ROP

0# − ℏ#
2RDOP

g# + Vℰ
∗

Ø  Of Ice 	and	Ke(Ice): bound state and scattering state wave functions of ?E + Z,&
Ø Φf term corresponds to the elastic and the second term describes breakup in this channel
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Contributions of deuteron breakup

n Using three-body wave functions calculated by Faddeev  equations
         Incident channel breakup contributions are negligible and rearrangement channel breakup is small.  

                                             linear scale                                                                       log scale
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