Design for LEPS2 Detector

Yoshikazu Maeda RCNP For LEPS collaboration

Introduction Why LEPS2
Detector Tracking system
Simulation study
Summary

LEPS detector

 Forward spectrometer for charged particle
 Θ_H= +-23 deg
 Θ_v= +-12 deg

- •PID(momentum and TOF) Δ TOF=150ps $\rightarrow \Delta$ m=30 MeV/c² (4m) K/ π separation 10 σ
- Momentum resolution $\Delta P/P$ < 1.0 % upto 2.5 GeV

Hyperon production with linear polarized beam

M. Sumihama et. al., PRC 73 (2006), 035214

 Σ Of azimuthal distribution

Good PID and $\Delta P/P$ $\Delta MM = 10 \text{ MeV}$ at 1 GeV. $\gamma \mathbf{p} \rightarrow \mathbf{K}^{+} \Lambda, \Sigma$ $\rightarrow p \pi^- \rightarrow \Lambda \gamma$ $\gamma \mathbf{p} \rightarrow \mathbf{K}^{+} \Lambda(1405), \Sigma(1385)$ $\rightarrow \Sigma^0 \pi^0 \rightarrow \Lambda \pi (12\%),$ \rightarrow Λ3γ Σπ(12%)

Large acceptance and symmetrical shape azimuthally

Penta-quark Θ^+


```
•γ d → Θ<sup>+</sup> K<sup>-</sup>p(Λ<sup>*</sup>)
CLAS < 450pb
LEPS (forward region)
IM(pK<sup>0</sup>)
```


MMd(γ ,K⁻p) GeV/c²

Keywords

- Momentum resolution at forward angle $\Delta p/p\sim1\%$.
- Good π/K separation.
- Large and smooth acceptance azimuthally \rightarrow Decay and polarization.
- Detection of decay product down to lower momentum 100 MeV/c
- Detection of neutral particle (Photon)

BNL-E949 detector Designed for $K^+ \rightarrow \pi^+ vv$

- •Solenoid 1 T
- •Inner volume 2.22x2.96 m
- •Barrel Photon detector Plastic & lead sandwich detector 14.3X₀
 - Energy and position
- •Range counter
 - Plastic scintillators 19 layers Enegy and Range

Tracking system

 SSD (Cylindrical+ Corn) Double side, σ=35um, 100um thick,

• Forward MWDC chamber He4+Ethane, R = 450 mm, 6 wire plane, σ_{xy} =150um, X/X₀ = 1.1×10⁻³,

Barrel tracker

Cathode strip + Anode wire $\sigma_{r\phi}$ = 250um, σ_z = 2-3 mm

• TPC or CDC R = 500 mm (24-26 layer), $\sigma_{r\phi}$ =150um, σ_z =2mm,

$\Delta P/P$ at forward region

Momentum dependence of $\Delta P/P$

Momentum [GeV/c]

 $\Delta P/P$ of TPC

Ar(90%)+Methan(10%) (P10)

Ne(90%)+Methan(10%)

$\Delta P/P \text{ of } CDC$

He(50%)+Ethane(50%)

BELLE CDC

H. Hirano et al. Nucl. Instr. and Meth. A455 (2000) 294-304

PID

Nuclear reaction?

PID at forward angle

N(π)/N(K) = 10³ 3 % in 2 σ cut →6 σ at 1.5 GeV/c

Forward TOF
 ∆T=50 psec,
 Scintilating fiber type

Hyperon production $\Theta_{\rm F}$ at E_γ=2.4 GeV

 Δ M=40 MeV/c²

Penta-quark Θ^+

 $\gamma d \rightarrow \Lambda (1520) \Theta^+$

Missing Mass

 $\Delta M(\Theta^{+})=17 \text{ MeV/c}^{2}$

+ Kinematical fit

 $\Delta M(\Theta^{+})=10 \text{ MeV/c}^{2}$

Invariant Mass

 $\Delta M(\Theta^{+})=3 \text{ MeV/c}^{2}$

Summary

- BNL-E949 is now considered to be used as the large acceptance detector at Spring8.
- SSD and Planer DC for forward ,and TPC or CDCfor large angle are considered for tracking system inside solenoid.
- Helium gas is effective to reduced MS effect at forward region < 20 degree.

 $\Delta P/P = 1.4\%$ at 10 degree

- CDC (He4 base) gives better resolution for very low momentum. However MS effect on L target dominates the resolution.
- For PID,

Energy loss information on the range counter for lower momentum $\Delta T{=}50~\text{ps}$ -> π/K separation at 1.5 GeV/c

Back up

γp→K*Λ(1405)

$$\begin{array}{c} \stackrel{\rightarrow}{\rightarrow} \pi^{+} \pi^{-} \\ \stackrel{\rightarrow}{\rightarrow} K^{0} \pi^{+} \\ \gamma + p \rightarrow K^{*+} + \Lambda(1405) \\ \stackrel{\rightarrow}{\rightarrow} \Sigma^{+} \pi^{-} \\ \stackrel{\downarrow}{\qquad} n \pi^{+} \end{array}$$

 8 MeV/c^{2} 5000
4000
3000
2000
1000
0
-0.04 -0.02 0 0.02 0.04 $\Delta M \ [GeV/c^{2}]$

R=500 mm in Helium

$\Delta P/P$ of TPC(With target)

Ar(90%)+Methan(10%) (P10)

MC effect is large for low momentum <0.3 GeV

$\Delta P/P$ of TPC (with target) Ne(90%)+Methan(10%)

$\Delta P/P$ of CDC (with target) He(50%)+Ethane(50%)

Same resolution as the one of TPC

Multiple scattering effect for forward charged particle

$$\frac{\sigma_{P_t}}{P_t} = \frac{0.016}{0.3B \ \beta \sin \theta \sqrt{L X_0}}$$

	X/X ₀ 10 ⁻³
Air	6.0
Ar	9.1
He4	0.3

Setup

SSD + TPC(Ar) + planer DC(He4)

SSD + CDC(He4)

50 cm space for TOF and other component? -> 33%-16% worse at 10 degree

GAS mixture for TPC

Experiment	Gas mixture	Proportion	Gas	ρ	X0	X0	n _{mp}
				[g/ l]	[g/cm2]	[m]	[1/cm ⁻]
ALEPH	Ar/CH4	91/9	He	0.1785	94.32	5280	2.7
NA49 VTPC	Ne/CO2	90/10	Ne	0.89990	28.94	322	16
NA49 MTPC	Ar/CO2/CH4	90/5/5	Ar	1.784	19.55	110	38
STAR	Ar/CH4 (P10)	90/10	CH4	0.717	46.22	645	30
ALICE	Ne/CO2	90/10	CO2	1.977	36.2	183	50
TESLA	Ar/CO2/CH4	93/2/5	C2H6	1.356	45.47	335	59

MWDC

Material for MWDC

GAS	X0 [m]	X[mm]	X/X0x10 ⁻⁴
He+Ethane(50%)	640	60	0.94
Ar +IsoB(30%)	127	60	4.72
Window	[cm]	[um]	
Mylar	28.7	2x50	3.48
Cathode plane	[cm]	[um]	
Mylar	28.7	7x10	2.44
AI	8.9	7x3	2.36
Cathode wire	[cm]	[um]	
Cathode wire CuBe([cm] 2.11	[um] 6.87	3.26
Cathode wire CuBe([cm] 2.11 8.9	[um] 6.87 43	3.26 4.83
Cathode wire CuBe(ϕ 50um) Al(125um) Anode wire	[cm] 2.11 8.9	[um] 6.87 43	3.26 4.83
Cathode wire CuBe(ϕ 50um) Al(125um) Anode wire W(30um)	[cm] 2.11 8.9 0.35	[um] 6.87 43 0.50	3.26 4.83 1.41
Cathode wire CuBe(ϕ 50um) Al(125um) Anode wire W(30um) Field wire	[cm] 2.11 8.9 0.35	[um] 6.87 43 0.50	3.26 4.83 1.41
Cathode wire CuBe(ϕ 50um) Al(125um) Anode wire W(30um) Field wire CuBe(ϕ 50um)	[cm] 2.11 8.9 0.35 2.11	[um] 6.87 43 0.50 1.37	3.26 4.83 1.41 0.65

Cathode planeCuBe for FW

ΣX/X0= 1.1x10⁻³ (He) 1.5x10⁻³ (Ar)

->DP/P ~ 1 %

 $\gamma n \rightarrow \Theta^+ K^- \rightarrow (K^0 p) K^-$

 $p \rightarrow K^+\Lambda$

PID (Chrenkov)

30mrad (p K separation) at 2 GeV

PID(TOF) $\Delta T = 50 \text{ ps}$

P=2.0 GeV

M² [**GeV/c²**]²

π/K separation 6 σ (Resolution contuor)

