103,104Rhのカイラル二重項候補の寿命測定

T. Suzuki¹, T. Koike², G. Rainovski^{3,4}, T. Ahn⁴, M. Carpenter⁵, A. Costin⁴, M. Danchev⁶, A. Dewald⁷, R.V. Janessens⁵, C.J. Lister⁵, O. Moler⁷, N. Pietralla⁴, T. Shinozuka⁸, J. Timár⁹, C. Vamman¹⁰, R. Wadsworth¹¹, S. Zhu⁵

```
<sup>1</sup> Department of Physics, Osaka University, Japan
```

² Department of Physics, Tohoku University, Japan

³ St. Kliment Oridski University of Sofia, Bulgaria

⁴ SUNY at Stony Brook, NY, USA

⁵ Argonne National Laboratory, IL, USA

⁶ University of Tennessee, TN, USA

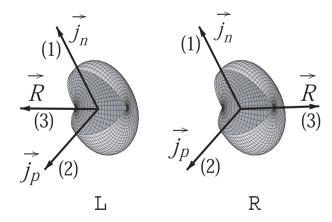
⁷ University of Cologne, Germany

⁸ Cyclotron and RI Center, Tohoku University, Japan

⁹ ATOMKI, Hungary

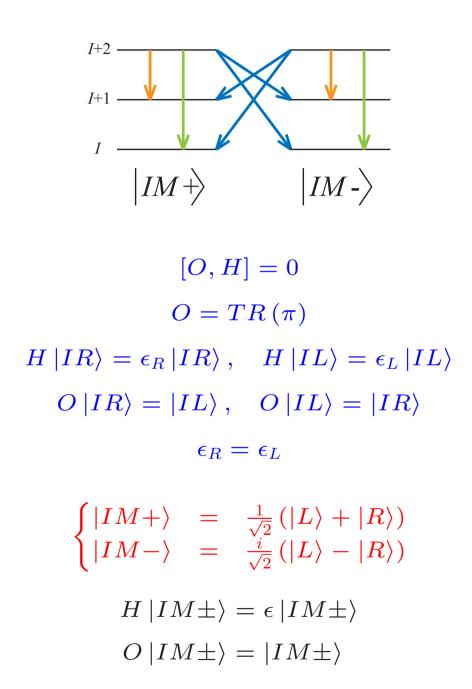
¹⁰ NSCL, MI, USA

¹¹ University of York, UK


September 24, 2007 北海道大学

カイラル二重項

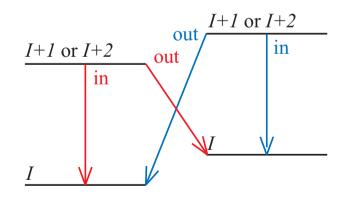
- 3軸非対称変形の有力な証拠
- 3つの角運動量ベクトルが互いに直交したとき、 右手-左手系が現れる。


From S. Frauendorf and J. Meng Nucl. Phys. A 617 (1997) 131

- 質量数 100 領域 (配位: $\pi g_{9/2}^{-1}\otimes \nu h_{11/2}$) の場合
 - 1. 3軸非対称変形における短軸 j_n ; 中性子(粒子) の角運動量ベクトル
 - 2. 3軸非対称変形における $\frac{E}{E}$ 軸 j_p ; 陽子(ホール) の角運動量ベクトル
 - 3. 3軸非対称変形における中間軸 R; 集団運動の角運動量ベクトル

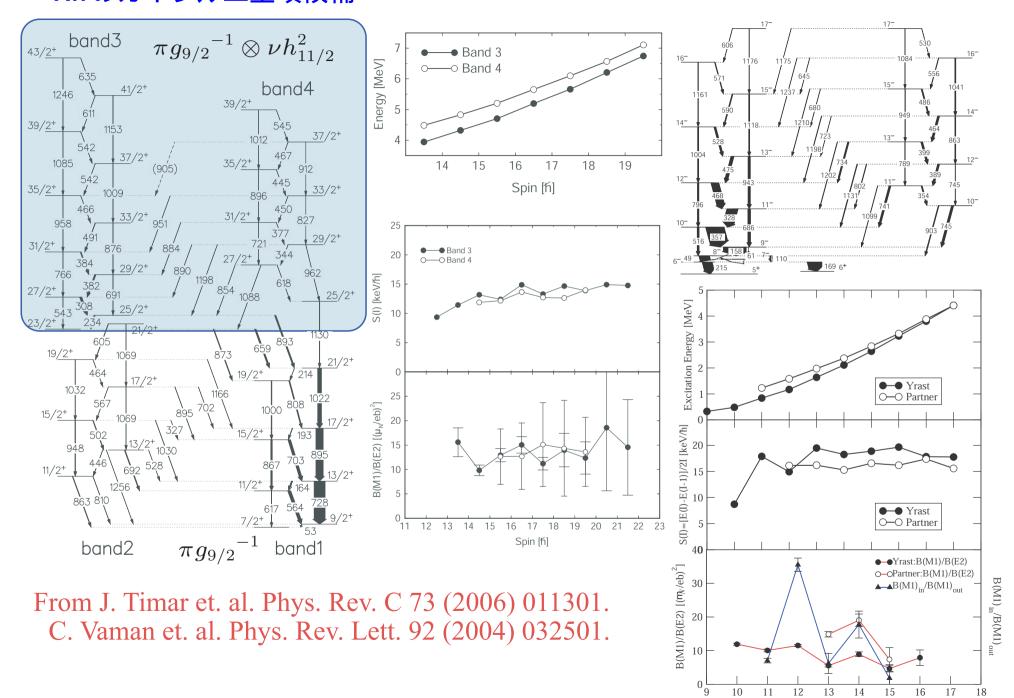
From T. Koike et. al. Phys. Rev. Lett. 93 (2004) 172502

→ 小池武志、原子核研究 Vol.52 p.8

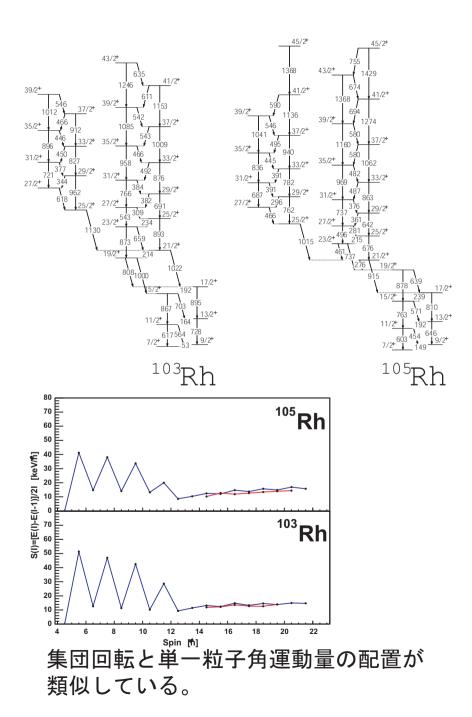

カイラル二重項を実験で示すための主要な条件

- ullet 同じパリティをもつほぼ縮退した2つの $\Delta I=1$ 回転バンドを観測すること
 - $A\sim 130$ 領域の奇々核、奇核で観測されている配位: 陽子 $h_{11/2}$ 粒子、中性子 $h_{11/2}$ ホール * 124,126,128,130,132 Cs, 130,132,134 La, 132,134 Pr, 136 Pm, 138,140 Eu, 135 Nd, 135 Ce
 - $-A \sim \! 100$ 領域の奇々核、奇核で観測されている配位: 陽子 $g_{9/2}$ ホール、中性子 $h_{11/2}$ 粒子 107 Ag, 102,103,104,105,106 Rh, 100 Tc
- $B(E2:I \to I-2)_{\text{in,out}}$ および $B(M1:I \to I-1)_{\text{in,out}}$ の値がバンド間で等しいか似ていること (電磁気的性質の議論)
 - 寿命測定が必要
 - * 質量数 130 領域の 134 Pr. 132 La, and 128 Cs では測定された
 - * 質量数100領域ではまだ測られていない

From C.M. Petrache et. al. Phys. Rev. Lett. 96 (2006) 112502

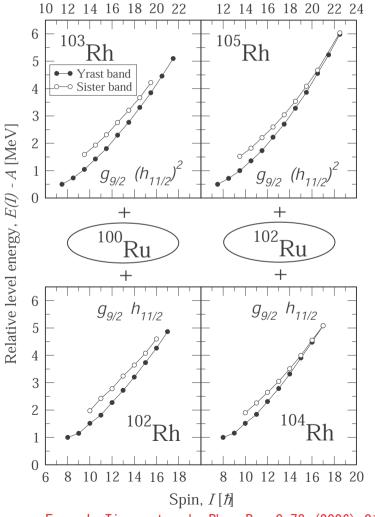

103, 104 Rhにおけるカイラル二重項候補の寿命測定

GAMMASPHER, Cologne plunger device

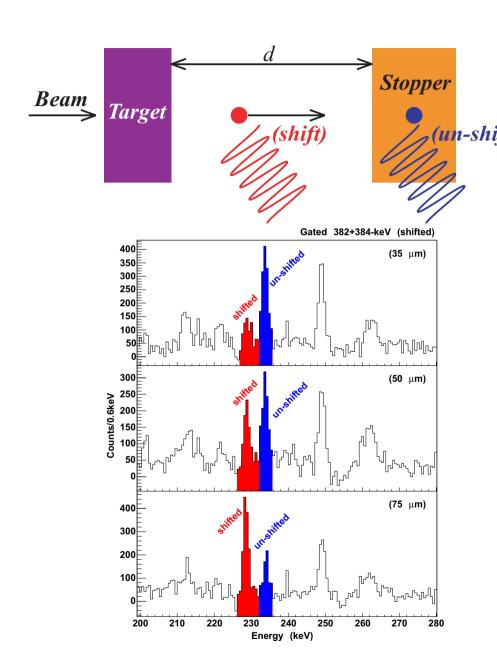


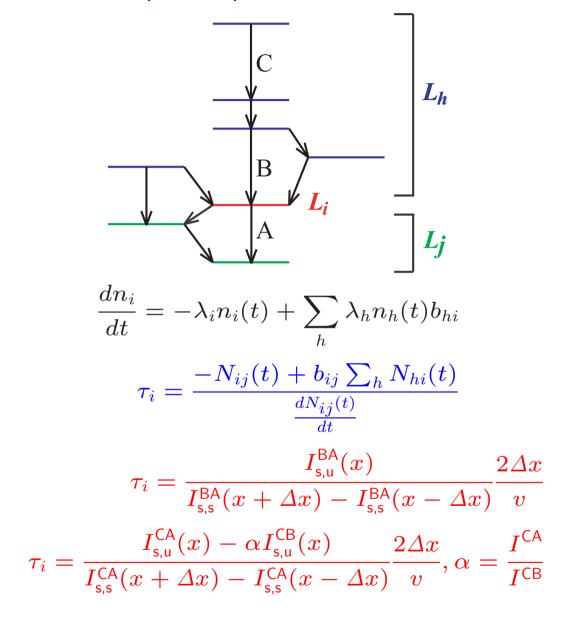
Spin [ħ]

103,104Rhのカイラル二重項候補



103 Rh \succeq 105 Rh

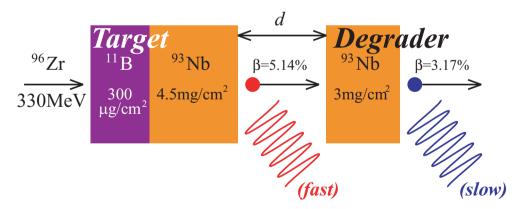

・ ¹⁰⁵RhはTAC計算が報告されている

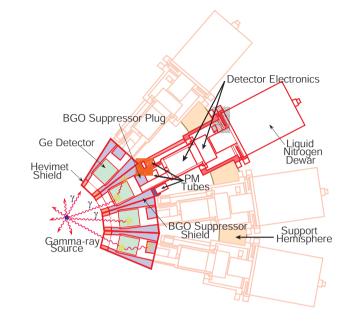

J. Timar et. al. Phys. Lett. B 598 (2004) 178

From J. Timar et. al. Phys Rev C 73 (2006) 011301.

Coincidence Recoil Distance Doppler Shift Method (RDDS)

From A. Dewald et. al. Z. Phys. A 334 (1989) 163;

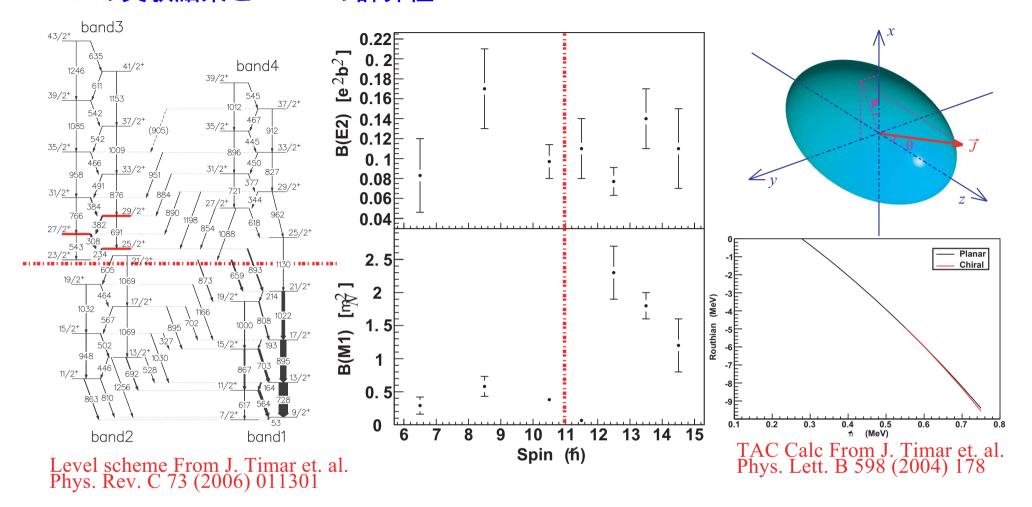

G. Böhm et. al. Nucl. Inst. Meth. Phys. Res. A 329 (1993) 248


GAMMASPHERE GSFMA169

質量数 100 領域におけるカイラル二重項候補の寿命 測定実験

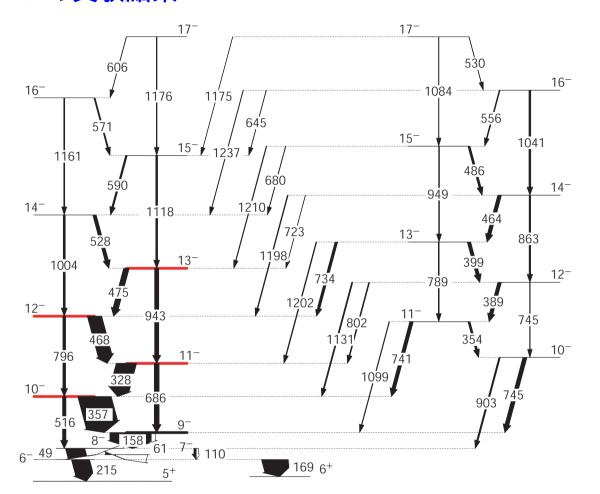
- Recoil Distance Doppler Shift Method (RDDS)
 - GAMMASPHERE
 - ケルン大学のプランジャー
- 逆運動学 (反跳粒子の速度が大きい) 反応 11 B(96 Zr,xn) 104,103 Rh (x=3,4) ビーム $E(^{96}$ Zr) = 330MeV (ANL ATLAS 加速器) トリガー γ - γ (ビーム電流が少ないため)

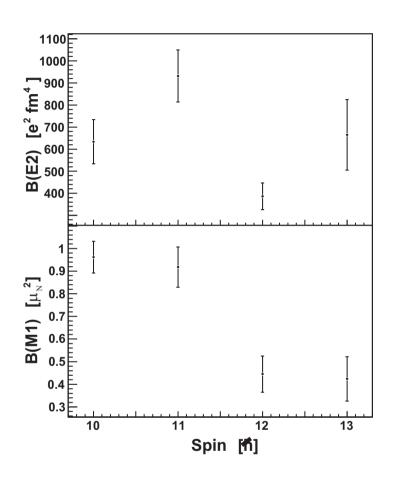
RDDS距離 7点 (8,15,23,35,50,75,100 μ m)



Front	ring	Back ring		
angle	N_{det}	angle	N_{det}	
		121.72°	5	
35.26°	8	129.93°	10	
50.07°	10	145.45°	10	
58.28°	5	162.73°	5	

84個の γ - γ マトリックスをゲートしながらピークを最小自乗適合


¹⁰³Rhの実験結果と¹⁰⁵Rhの計算値



Lev	vel		TAC fo	${\sf r}^{105}{\sf Rh}$	Exp. for	^{103}Rh
Energy	Spin	ω	B(E2)	B(M1)	B(E2)	B(M1)
(keV)	(J^π)		(e^2b^2)	(μ_N^{-2})	(e^2b^2)	(μ_N^2)
3631	25/2 ⁺	0.25	0.09	2.28	0.077(14)	2.3(4)
3940	$27/2^{+}$	0.30	0.09	2.16	0.14(3)	1.8(2)
4322	29/2 ⁺	0.35	0.09	2.03	0.11(4)	1.2(4)

ω	planar	aplanar
0.55	-4.297	-4.297
0.60	-5.971	-5.976
0.65	-7.064	-7.102
0.70	-8.206	-8.295
0.75	-9.397	-9.552

¹⁰⁴Rhの実験結果

- B(M1)/B(E2) のスピン依存性はB(E2) のスピン依存性に起因
 - カイラル二重項ではB(M1) にスピン依存性が期待されている。 T. Koike et. al. Phys. rev. Lett. 93 (2004) 172502.
 - -B(E2) がスピン依存性の原因は不明。

Summary

- カイラル二重項の候補である 103,104 Rh におけるバンドメンバの寿命測定を行った。
 - RDDS、GAMMASPHERE
- 103 Rh について
 - カイラル二重項に関連する準位では3準位の寿命を得た。
 - TAC計算が報告されている 105 RhのTAC計算との比較を行った。
 - TAC計算は、 $\omega \geq 0.55$ の領域でカイラル二重項実現を示唆している。
 - 寿命を得た3準位 $(0.25 \ge \omega \ge 0.35)$ は 105 RhのTAC計算とよく一致した。
- 104Rh について
 - 4準位の寿命を得た。
 - 報告されていたB(M1)/B(E2)のスピン依存性はB(E2)に依存していた。
 - B(E2) がスピン依存性を持つ原因は不明である。