

Results on neutrinoless double beta decay of ¹³⁰Te from CUORICINO

Adam Bryant UC Berkeley & LBNL on behalf of the CUORICINO Collaboration

Japan-US Seminar on Double Beta Decay and Neutrinos Waikoloa, HI October 12, 2009

CUORICINO collaboration

M. Barucci, L. Risegari and G. Ventura

Dipartimento di Fisica dell' Università di Firenze e Sezione di Firenze dell' INFN, Firenze I-50125, Italy

L. Canonica^{1,2}, S. Di Domizio^{1,2}, E. Guardincerri^{2,3} and M. Pallavicini^{1,2}

¹ Dipartimento di Fisica dell'Universita' di Genova, Italy

- ² Sezione di Genova dell'INFN, Genova I-16146, Italy
- ³ Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L'Aquila), Italy

M. Balata, C. Bucci, P. Gorla, S. Nisi and C. Tomei Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L'Aquila), Italy

E. Andreotti^{1,2}, L. Foggetta^{1,2}, A. Giuliani^{1,2}, C. Nones^{1,2}, C. Rusconi^{1,2} and C. Salvioni^{1,2}

¹Dipartimento di Fisica e Matematica dell'Università dell'Insubria , Como I-22100, Italy ²Sezione di Milano Bicocca dell' INFN, Milano I-20126, Italy

V. Palmieri

Laboratori Nazionali di Legnaro, Via Romea 4, I-35020 Legnaro (Padova), Italy

66 collaborators 15 institutions in Italy and U.S.

C.Arnaboldi^{1,2}, C.Brofferio^{1,2}, S.Capelli^{1,2}, L.Carbone², M.Carrettoni^{1,2}, M.Clemenza^{1,2}, O.Cremonesi², E.Ferri^{1,2}, E.Fiorini^{1,2}, A. Giachero², L.Gironi^{1,2}, S.Kraft^{1,2}, C.Maiano^{1,2}, M. Martinez², A.Nucciotti^{1,2}, L. Pattavina^{1,2}, M.Pavan^{1,2}, G.Pessina², S.Pirro², E.Previtali², D.Schaeffer² and M.Sisti^{1,2} ¹Dipartimento di Fisica dell'Università di Milano-Bicocca, Milano I-20126, Italy ²Sezione di Milano Bicocca dell'INFN, Milano I-20126, Italy

F.Bellini, R.Faccini, F.Orio and M.Vignati

Dipartimento di Fisica dell'Universita' di Roma La Sapienza e Sezione di Roma dell'INFN, Roma I-00185, Italy

J.W.Beeman¹, A.Bryant^{2,4}, E.E.Haller^{1,3}, L.Kogler^{2,4} and A.R.Smith²

¹ Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ² Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ³ Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA ⁴ Department of Physics, University of California, Berkeley, CA 94720, USA

M.J. Dolinski^{1,3}, K.Kazkaz¹, E.B. Norman^{1,2} M.Pedretti¹ and N.D.Scielzo¹

¹ Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ² Department of Nuclear Engineering, University of California, Berkeley, CA 94720 USA ³ Department of Physics, University of California, Berkeley, CA 94720, USA

T.D. Gutierrez

California Polytechnic State University, San Luis Obispo, CA 93407 USA

F.T.Avignone III, I.Bandac, R.J.Creswick, H.A.Farach, C.Martinez, L.Mizouni and C.Rosenfeld Department of Physics and Astronomy, University of South Carolina, Columbia SC 29208 USA

L.Ejzak, R.H.Maruyama and S.Sangiorgio

University of Wisconsin, Madison, WI 53706 USA

Laboratori Nazionali del Gran Sasso

Gran Sasso National Lab

- National laboratory of the Istituto Nazionale di Fisica Nucleare (INFN) of Italy
- Built adjacent to a highway tunnel through the Gran Sasso mountain range
- 1400 m of rock overburden
 (about 3500 meters water equivalent)
- Cosmic ray muon flux attenuated by about 10⁶ to about 0.7 muons / m² / h

¹³⁰Te as a 0vββ decay candidate

The CUORICINO detector

- Predecessor to CUORE
- 62 TeO₂ crystals serve as source and detector
- 40.7 kg of TeO₂
- 2 small crystals were enriched to 75% in ¹³⁰Te
- 2 small crystals were enriched to 82.3% in ¹²⁸Te
- ▶ 11.6 kg of ¹³⁰Te
- Operated 2003–2008 at Gran Sasso National Laboratory (LNGS) in Italy

Bolometric technique

Dilution refrigerator cools crystals to about 8 mK.

Heat capacity of dielectric and diamagnetic crystals follows the Debye law at low temperatures:

$$C = \beta \left(\frac{T}{T_d}\right)^3$$

 $C\approx 1~{\rm MeV}/0.1~{\rm mK}$

The energy deposited by a single particle results in a measurable temperature rise.

NTD thermistors

Neutron-transmutation-doped (NTD) Ge thermistors function as sensitive thermometers to measure the small temperature change, $\Delta T = E/C$.

NTD thermistor resistance:

$$R(T) = R_0 \exp\left(\frac{T_0}{T}\right)^{1/2}$$

Nuclear processes creating dopants

$^{70}Ge~(21\%) + n$	\rightarrow	⁷¹ Ge ($\sigma_T = 3.43 \pm 0.17$ b, $\sigma_R = 1.5$ b)
^{71}Ge	\rightarrow	$^{71}Ga\ (t_{1/2} = 11.4 \text{ day})$ Acceptor
74 Ge (36%) + n 75 Ge	\rightarrow \rightarrow	$ \label{eq:starses} \begin{array}{ll} {}^{75}{\rm Ge}\;(\sigma_T=0.51\pm 0.08\;{\rm b},\;\sigma_R=1.0\pm 0.2\;{\rm b})\\ {}^{75}{\rm As}\;(t_{1/2}=83\;{\rm min}) & {\rm Donor} \end{array} $
76 Ge (7.4%) + n	\rightarrow	$^{77}{\rm Ge}\;(\sigma_T=0.16\pm0.014\;{\rm b},\;\sigma_R=2.0\pm0.35\;{\rm b})$
$^{77}\mathrm{Ge}$	\rightarrow	⁷⁷ Se $(t_{1/2} = 38.8 \text{ hr})$ Double Donor

Temperature pulses

Excellent energy resolution: average resolution of CUORICINO big crystals was about 7 keV FWHM at 2615 keV $\approx 0.27\%$ (CUORE goal is 5 keV FWHM at 2615 keV $\approx 0.19\%$).

However, no other information such as event location within crystal or particle identification

Slow signals, ok for a low background experiment

3

3.5

Time (s)

0

Resolution of CUORICINO bolometers

 $\Delta E = \xi \sqrt{k_B C T^2}$ (independent of energy) due to exchange of phonons with heat sink $\Delta E \sim$ tens of eV for kg size crystals

Extrinsic noise sources, mainly mechanical vibrations, determine observed resolutions.

Electrical Power

Electrons

Calibration of CUORICINO

- Th source calibration every 1–2 months lasting 2–3 days
- Calibration data used to derive relationship between pulse amplitudes and energies and for obtaining resolutions at 2615 keV

Resolutions at 2615 keV

Adam Bryant

CUORICINO background spectrum

anti-coincidence cut applied

Crystal type	background counts / (keV \cdot kg \cdot yr)
$5 \times 5 \times 5 \text{ cm}^3$	0.18 ± 0.01
$3 \times 3 \times 6 \text{ cm}^3$	0.20 ± 0.04

Anti-coincidence

The electrons from a $0\nu\beta\beta$ -decay event stop in one crystal 86.3% of the time (84.5% for the small crystals).

Many backgrounds, such as muons, alpha decays near crystal surfaces, and Comptonscattered gammas, deposit energy in multiple crystals in coincidence.

Adam Bryant

Background sources

Contribution	Source
$(50 \pm 20)\%$	degraded alpha particles from ²³⁸ U and ²³² Th contaminations on copper surfaces
$(10 \pm 5)\%$	degraded alpha particles from ²³⁸ U and ²³² Th contaminations on crystal surfaces
$(40 \pm 10)\%$	multiple Compton events from 2615 keV gamma of ²⁰⁸ Tl

Adam Bryant

New ¹³⁰Te Q-value measurements

Two new measurements of the $\beta\beta$ decay Q-value of ¹³⁰Te were published in 2009.

Q-value (keV)	Reference
2530.3(2.0)	2003 Atomic Mass Evaluation recommended value G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729 , 337 (2003)
2527.01(32)	N. D. Scielzo <i>et al.</i> , Phys. Rev. C 80, 025501 (2009)
2527.518(13)	M. Redshaw <i>et al.,</i> Phys. Rev. Lett. 102, 212502 (2009)

Results from CUORICINO

Limit aided by downward fluctuation of background in signal region

Fitting technique

CUORICINO small natural crystals

Simultaneous fit to three spectra

response function =
$$\sum_{i=1}^{N} \text{gaus}(Q, \sigma_i) \times \text{exposure}(i)$$

Background includes a flat component and a Gaussian component for ⁶⁰Co.

Likelihood function is used to obtain the 90% C.L. limit, following the Bayesian method with a flat prior in the physical region.

Finalizing the analysis

- Analysis of complete CUORICINO data set is being performed with new software developed for CUORE – opportunity to debug, improve, and validate new software with existing data.
- Thorough checks of data quality are in the final stages.
- Potential improvements being tested: treating each detector separately in the analysis and doing a simultaneous fit to all independent detectors, each with its own resolution. We are also trying taking into account variation in the resolution over time.

Conclusions

- CUORICINO has set the strongest limit on the $0\nu\beta\beta$ decay rate of ¹³⁰Te: $T_{1/2}^{0\nu}(^{130}\text{Te}) > 2.9 \times 10^{24} \text{ y} (90\% \text{ C.L.})$ (preliminary)
- CUORICINO has set one of the most stringent limits on the effective neutrino mass:

$$\langle m_{\beta\beta} \rangle < 0.20 - 0.69 \text{ eV}$$
 (preliminary)

- The analysis of the complete CUORICINO data set is being finalized.
- CUORICINO demonstrated the technology for CUORE in a large scale bolometric experiment that operated for several years with good energy resolution and low background.

