

Theory Overview

Hitoshi Murayama (IPMU & Berkeley) <u>APS/JPS meeting Ονββ</u> seminar

BERKELEY CENTER FOR THEORETICAL PHYSICS

The Particle Universe

There are a lot of neutrinos out there

Window to Short Distances

- Effects of physics beyond the SM as effective operators $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \cdots$
- Can be classified systematically $\mathcal{L}_{5} = (\overset{\text{Weinberg}}{LH})(\overset{\text{T}}{L}H) \to \frac{1}{\Lambda}(L\langle H\rangle)(L\langle H\rangle) = m_{\nu}\nu\nu$
- $\mathcal{L}_6 = QQQL, \bar{L}\sigma^{\mu\nu}W_{\mu\nu}He,$

 $\epsilon_{abc}W^{a\mu}_{\nu}W^{b\nu}_{\lambda}W^{c\lambda}_{\mu}, (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H), \cdots$

- Lowest order effect of physics at short distances
- Tiny effect $(m_v/E_v)^2 \sim (0.1 \text{ eV}/\text{GeV})^2 = 10^{-20}!$
- Inteferometry (*i. e.*, Michaelson-Morley)!
 - Need coherent source
 - Need interference (*i.e.*, large mixing angles)
 - Need long baseline

Nature was kind to provide all of them!

• "neutrino interferometry" (a.k.a.

Neutrinos are Left-handed

Helicity of Neutrinos*

M. GOLDHABER, L. GRODZINS, AND A. W. SUNYAR Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

A COMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with Eu^{152m}, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme,¹ 0-, we find that the neutrino is "left-handed," i.e., $\sigma_{\nu} \cdot \hat{p}_{\nu} = -1$ (negative helicity).

Neutrinos must be Massless

 All neutrinos left-handed ⇒ massless

Now neutrino right-handed??

 \Rightarrow contradiction \Rightarrow can't have a mass

- CPT theorem in quantum field theory
 - C: interchange particles & antiparticles
 - P: parity
 - T: time-reversal
- State obtained by CPT from ν_L must exist: Hitoshi Murayama, APS/JPS 0vββ seminar Waikoloa 2009

Other Particles?

- What about other particles? Electron, muon, up-quark, downquark, etc
- We say "weak force acts only on left-handed particles" yet they are massive.

Isn' t this also a contradiction?

No, be conting the and eps/eps eps seminal market page 009 η a

- "Empty" space filled with a BEC: cosmic superconductor
- Particles bump on it, but not photon because it is neutral.

oarticles mix ⇒ But neutrinos can't bump because there isn't a right-handed one \Rightarrow stays massless

Lot of effort since '60s

Finally convincing evidence for "neutrino oscillation"

Neutrinos have tiny but finite mass

 $L_0 = 180 \text{ km}$

MINOS ' 08

 SuperK atmospheric neutrino result confirmed with

I P M U

BERKELEY CENTER FOR THEORETICAL PHYSICS

Raised More Questions

- Dirac or Majorana?
- Absolute mass scale
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

What do we do now?

Neutrinos have mass

- They have mass. Can't go at speed of light. v_L v_L v_R ?? v_R ?? v_R ??
- What is this right-handed particle?
 - New particle: right-handed neutrino (Dirac)
 - Old anti-particle: right-handed anti-neutrino (Majorana) Hitoshi Murayama, APS/JPS 0vββ seminar Waikoloa 2009

Two ways to go

(1) Dirac Neutrinos:

- There are new particles, righthanded neutrinos, after all
- Why haven't we seen them?
- Right-handed neutrino must be very very weakly coupled

Extra Dimension

- All charged particles are on a 3-brane
- Right-handed neutrinos SM gauge singlet \Rightarrow Can propagate in the "bulk"
- Makes neutrino mass small
- Or SUSY breaking
- Or late-time phase transition

Two ways to go

(2) Majorana Neutrinos:

- There are no new light particles
- What if I pass a neutrino and look back?
- Must be righthanded *anti*neutrinos

- Why is neutrino mass so small?
- Need right-handed neutrinos to generate neutrino masseutral

To obtain $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim m_t$, $M_3 \sim 10^{15} \text{GeV} (\text{GUT!})$

Grand Unification

- electromagnetic, weak, and strong forces have very different strengths
- But their strengths become *the same* at 10¹⁶ GeV if supersymmetry
- To obtain $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim m_t$ $m_3 \sim M_{itoshi} Murayama/APS/JPS 0v\beta\beta$ seminar Waikoloa 2009

Neutrino mass may be probing unification:

Einstein's dream

Anti-matter is dangerous

us 2

MatterAnti-matterThe Great Annihilation

Description Contractor Con

us 2

MatterAnti-matterThe Great Annihilation

Baryogenesis

- What created this tiny excess matter?
- Need to turn a bit of anti-matter into matter
- Necessary conditions for baryogenesis (Sakharov):
 - Baryon number non-conservation
 - CP violation
 - (subtle difference between matter and anti-matter)
 - Non-equilibrium $\Rightarrow \Gamma(\Delta B > 0) > \Gamma(\Delta B < 0)$
- It looks like neutrings have no role in this....

Electroweak Anomaly

- Actually, SM converts <u>L</u> (v) to <u>B</u> (quarks).
 - In Early Universe (T
 > 200GeV), W is
 massless and
 fluctuate in W
 plasma
 - Energy levels for left-handed

 $\Delta L = \underline{A} = \underline{A} = 1 \implies \Delta (B - L) = 0$ f | uctuate Correspon = 0

More precisely

- What I showed on the previous slide is a toy model of 1+1-D U(1) gauge theory
- Think of 1D space as S^1 , while $U(1) = S^1$
- non-trivial topology $\pi_1(U(1)) = Z$, vacuum has winding #
- In 3+1-D SU(2) gauge theory, think of 3D space as S^3 , while SU(2)= S^3
- non-trivial topology $\pi_3(\mathrm{SU}(2)) = Z$, vacuum has winding #
- In either case, anomaly violates particle number
- Hitoshi Murayama, APS/JPS 0vββ seminar Waikoloa 2009
 Ativah-Patodi-Singer index theorem relates

Leptogenesis

- You generate *Lepton Asymmetry* first.
- Generate *L* from the direct CP violation in right-handed net v_i
- Like *ε'/ε*

• *L* gets converted to *B* via EW anomaly

 \Rightarrow More matter than anti-matter

⇒ We have survived "The Great Hitoshi Murayama, APS/JPS 0vββ seminar Waikoloa 2009 Annihilation"

Origin of Universe

I P M U

BERKELEY CENTER FOR THEORETICAL PHYSICS

Raised More Questions

- Dirac or Majorana?
- Absolute mass scale
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

I P M U

BERKELEY CENTER FOR THEORETICAL PHYSICS

Raised More Questions

- Dirac or Majorana?
- Absolute mass scale
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

- Many neutrinoless double beta decay experiments aiming at below 0.1eV
- Turn anti-matter into matter!
- Thanks to SNO, θ₁₂
 not maximal, /ower
 /imit when
 inverted
 Hitoshi Muravama, APS/JP

Nuclear matrix elements

- 2νββ and 0νββ matrix elements are *different*!
- Difficult to obtain model-independent constraints
- Need to be calculated in models
- Systematic errors difficult to calibrate
- QRPA model shi Murayama, APS/JPS 0vββ seminar Waikoloa 2009

Rodin, Faessler, Šimkovic, Vogel Nucl. Phys. A766, 107 (2006) erratum *Need multiple nuclear isotopes for believable limits!*

PHYSICS

Raised More Questions

- Dirac or Majorana?
- Absolute mass scale
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal? $\Rightarrow 1\% @ T2K, NOvA$

PHYSICS

Raised More Questions

- Dirac or Majorana?
- Absolute mass scale
- How small is θ_{13} ?
- CP Violation?
- Mass hierarchy?
- Is θ_{23} maximal?

Now that LMA is established...

- Dream case for neutrino oscillation
- Δm_{solar} within reach of terrestrial
- Even CP violation may be probed by
 - neutrino superbeam
 - muon-storage ring neutrino factory
 - beta beam
- Possible only if
 - $\Box \Delta m_{23}^2$, s_{23} large (near maximal)
 - $\Box \Delta m_{12}^2$, s_{12} also large (LMA)
 - θ_{13} large enough: *it decides the future!*
 - Reactor and long-baseline experiments

Can we prove seesaw?

TOM BRUISE

ON CRUISE

THE MISSION BEGINS MAY 5

MAYBE

E BER

survey and the second

Numianteadentble com

- $0\nu\beta\beta$ discovered: neutrinos are Majorana
 - Need "new physics" below ~10¹⁴GeV
- LHC finds SUSY, ILC establishes SUSY
- Gaugino masses unify (two more coincidences)
- Scalar masses unify for 1st, 2nd generations (two for 10, one for 5*, times two)
 ⇒ strong hint that there are no additional particles beyond the MSSM below M_{GUT} except for gauge singlets.

Buckley & HM, 2006 and in preparation Hitoshi Murayama, APS/JPS 0vββ seminar Waikoloa 2009

Gaugino and scalars

BERKELEY CENTER FOR

Scalar Masses

PMU What about Yukawa couplings?

- Yukawa couplings can in principle also modify the running of scalar masses
- We may well have an empirical evidence against large neutrino Yukawa coupling and large *M* by the lack offlitosherpteona.APS/JF

ack of Hitosher Walkoloa 2009

Leptogenesis?

- Only gauge neutrals below M_{GUT} beyond MSSM
- Either
 - Baryogenesis due to particles we know at TeV scale, *i.e.*, electroweak baryogenesis
 - Baryogenesis due to gauge-singlets well above TeV,
 i.e., leptogenesis by v_R
- The former can be excluded by colliders & EDM
- The latter gets support from Dark Matter concordance, *B*-mode CMB fluctuation that point to "normal" cosmology after inflation

Indirect Dark Matter Detection

for direct Murayama, APS/JPS 0vββ seminar Waikoloa 2009

Conclusions

- Neutrino oscillation firmly established
- Yet many more important questions remain
- $0_{\nu\beta\beta}$ the only practical way to decide Dirac vs Majorana
- connections to big questions about the universe
 - Did neutrinos affect structure formation?
 - Why do we exist?
 - Why does the Universe exist?
- · Challenge to test the origin of neutrino mass
 - SUSY-GUT allows test for seesaw
- Neutrinos probe dark matter Hitoshi Murayama, APS/JPS 0vββ seminar Waikoloa 2009