NEMO 3 double beta decay experiment and SuperNEMO project

Hideaki OHSUMI (Saga Univ.) (NEMO 3/SuperNEMO Collaboration)

NEMO 3 is running at LSM

Philosophy of the NEMO 3/SuperNEMO experiment

The Location of NEMO3

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18cm) Neutron shield: 30 cm water + boron 40 cm Wood (top and bottom)

ββ decay isotopes in NEMO-3 detector

How to detect the signals and the tag the background ?

Identification of e, γ , α

Tracking (Identification e/others)

Delayed (<700 μ s) α track

Calorimeter $\varepsilon(\gamma) \sim 50\%$ (@0.5MeV)

Possible for tagging ey, eyy, eyyy, ...

Time of flight $\sigma_t \sim 300 \text{ps}(@1\text{MeV})$

External Background rejection

➤ Magnetic Field (Identification e⁻/e⁺)

3~5% e⁻/e⁺ confusion @ 1~7MeV

Study of Background Process

 e^{214} Bi Tagged by e(γ)α (~164µs)

(²¹⁴Bi->²¹⁴Po->²¹⁰Pb)

208Tl eγ, eγγ, eγγγ, with γ (2.6MeV)

or Tagged by $e(\gamma) \alpha$ (~300ns)

(²¹²Bi->²¹²Po->²⁰⁸Pb)

Neutron Crossing e (4~8MeV)

Compton + Möller

Background events observed by NEMO-3...

Electron crossing > 4 MeV Neutron capture

Electron + N γ 's ²⁰⁸Tl (E γ = 2.6 MeV)

Electron + α delay track (164 μ s) $^{214}Bi \rightarrow ^{214}Po \rightarrow ^{210}Pb$

Electron – positron pair **B** rejection

ββ events selection in NEMO-3

Typical $\beta\beta 2\nu$ event observed from ¹⁰⁰Mo

• Common vertex

 $0\nu\beta\beta$ of ¹⁰⁰Mo

(Data at the end of 2008) Phase 1 + Phase 2

Efficiency ε = 0.0726

(Phase 1 \rightarrow Phase 2) NEMO 3 have been done **Radon BG.** reduction

NEMO 3 Tent

²¹⁴Bi -> ²¹⁴Po -> ²¹⁰Pb NEMO 3 itself can measure Radon BG. Radon

Free-Radon Air Factory $(15Bq/m^3 \rightarrow < 15mBq/m^3)$

Inside NEMO 3 Reduction factor of ~6

(Average) (Phase 1 \rightarrow Phase 2) $37.7 \rightarrow 6.5 \text{ mBq/m}^3$

(Phase 1 \rightarrow Phase 2) Radon BG. reduction in $0\nu\beta\beta$ energy region (¹⁰⁰Mo)

Excluded at 90% C.L. 8.3 events BG. < 1.5 events/y/kg (~1 events/y/kg, radon) Data: 10 events, Expected: 11.2 events Excluded at 90% C.L. 6.1 events BG. < 0.7 events/y/kg (<0.2 events/y/kg, radon) Good proof of NEMO 3 high quality data from Cu foils

 \rightarrow No unknown ee signals (like $\beta\beta$ decay) from Cu foils !

Cu foils (621g)

 \rightarrow Background events are perfectly understood.

(Good examples of the background study in NEMO 3)

NEMO measures all background contributions itself using various channels (e, ee, $e\alpha$, $e\gamma$, $e\gamma\gamma$) NIM A606(2009) pp. 449-465.

 $0\nu\beta\beta$ of ⁸²Se

(Data at the end of 2008) Phase 1 + Phase 2

Data: 15 events, Expected: 13.2 events Excluded at 90% C.L. 8.9 events Efficiency ε= 0.151

9.8 events excluded Total mean Ov efficiency ε = 0.182 $T_{1/2}$ (Ονββ) > 3.6 · 10²³ γ @90% C.L. <m_v> < 0.89 - 1.61 eV

Summary of OvBB results

- No evidence for Ovßß decay
- Current limits on Ovββ (at 90% C.L.):

Isotope	Exposure (kg·y)	Τ _{1/2} (Ονββ), γ	$\langle m_v \rangle$, eV [NME ref.]
¹⁰⁰ Mo	26.6	> 1.1 · 10 ²⁴	< 0.45 - 0.93 [1-3]
⁸² Se	3.6	> 3.6 · 10 ²³	< 0.9 - 1.6 [1-3]; < 2.3 [7]
¹⁵⁰ Nd	0.095	> 1.8 · 10 ²²	< 1.7 - 2.4 [4,5] ;< 4.8 - 7.6 [6]
¹³⁰ Te	1.4	> 9.8 · 10 ²²	< 1.6 - 3.1 [2,3]
⁹⁶ Zr	0.031	> 9.2 · 10 ²¹	< 7.2 - 19.5 [2,3]
⁴⁸ Ca	0.017	> 1.3 · 10 ²²	< 29.6 [7]

- NME references:
 - [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)
 - [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315
 - [3] F.Simkovic, et al. Phys.Rev. C 77 (2008) 045503
 - [4] V.A. Rodin et al. Nucl. Phys. A 793 (2007) 213
 - [5] V.A. Rodin et al. Nucl.Phys. A 766(2006) 107
 - [6] J.H.Hirsh et al. Nucl.Phys. A 582(1995) 124
 - [7] E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503

¹⁰⁰Mo 2 β 2 ν results (Phase I)

(Data Feb. 2003 – Dec. 2004) \rightarrow (Phase I)

No Significant discrepancy $\rightarrow 2\nu\beta\beta$ is really standard process!

Other nuclei: results of the BB2v measurements

 6.9 ± 0.9 (stat) ± 1.0 (sys) 10^{20} y

4.4 $^{+0.5}_{-0.4}$ (stat) \pm 0.4 (sys) 10¹⁹ y

 2.35 ± 0.14 (stat) ± 0.16 (sys) 10^{19} y

It is interesting to arrange the data according to S/B ..

No unknown ee signals !

⁴⁸Ca (Preliminary)

High bkg here due to contamination with ⁹⁰Sr

NME: E. Caurrier et al., Phys. Rev. Lett. 100 (2008) 052503.

Single electron spectum $2\nu\beta\beta$ (¹⁰⁰Mo)

Decay to the excited 0^+ (¹⁰⁰Mo $2\nu\beta\beta$)

Summary of 2vBB results

Isotope	S/B	(2vββ), y (NEMO 3)
¹⁰⁰ Mo	40	$(7.11 \pm 0.02(stat)\pm 0.54(syst))\cdot 10^{18}$ (SSD favoured) [1]
¹⁰⁰ Mo(0 ⁺ ₁)	3	(5.7 ^{+1.3} _{-0.9} (stat))±0.8(syst))·10 ²⁰ [2]
⁸² Se	4	(9.6± 0.3(stat)±1.0(syst))·10 ¹⁹ [1]
¹¹⁶ Cd	7.5	(2.8± 0.1(stat)±0.3(syst))·10 ¹⁹ [3]
¹³⁰ Te	0.35	(6.9± 0.9(stat)±1.0(syst))·10 ²⁰ [6]
¹⁵⁰ Nd	2.8	(9.11 ^{+0.25} -0.22(stat)±0.63(syst))·10 ¹⁸ [4]
⁹⁶ Zr	1.0	(2.35± 0.14(stat)±0.16(syst))·10 ¹⁹ [5]
⁴⁸ Ca	6.8	(4.4 ^{+0.5} _{-0.4} (stat)±0.4(syst))·10 ¹⁹ [6]

[1] Phase 1 data, Phys. Rev. Lett. 95 (2005) 182302. Additional statistics are being analysed, to be published soon.

- [2] Phase 1 data, Nuclear Physics A781 (2006) 209-226.
- [3] Phase 1 data.
- [4] Phase 1 and 2, Physcal Review C80 (2009) 032501(R)
- [5] Phase 1 and 2, arXiv:0906,2694[nucl-ex] (2009)
- [6] Phases 1 and 2, preliminary.

V+A currents and Majoron

VTA currents.
$(\mathbf{T}_{1/2})^{-1} = \mathbf{C}_{mm} \langle \mathbf{m}_{\nu} \rangle^{2} + \mathbf{C}_{\eta\eta} \langle \boldsymbol{\eta} \rangle^{2} + \mathbf{C}_{\lambda\lambda} \langle \boldsymbol{\lambda} \rangle^{2} + \mathbf{C}_{m\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle \times \langle \boldsymbol{\eta} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle + \mathbf{C}_{\eta\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} \rangle + \mathbf{C}_{\eta} \langle \mathbf{m}_{\nu} \rangle \times \langle \mathbf{m}_{\nu} $
$C_{m\lambda} \langle m_{\nu} \rangle \times \langle \lambda \rangle + C_{\eta\lambda} \langle \eta \rangle \times \langle \lambda \rangle, C_{xx} - F \cdot M ^2$
$\langle \lambda \rangle, \langle \eta \rangle$ - right currents coupling constants
Maioron emission:
$(A, Z) \to (A, Z + 2) + 2e^{-} + \chi^{0}(\chi^{0})$

VIA ourropter

Isotope	V+A *	Majoron(s) emission **			
	Τ _{1/2} (Ονββ) γ	n=1	n=2	n=3	n=7
¹⁰⁰ Mo	>5.7·10 ²³	>2.7·10 ²²	>1.7·10 ²²	> 1.·10 ²²	> 7·10 ¹⁹
	λ <1.4·10 -6	g _{ee} <(0.4-1.8)·10 ⁻⁴			
⁸² Se	>2.4·10 ²³	>1.5·10 ²²	> 6·10 ²¹	>3.1·10 ²²	>5·10 ²⁰
	λ <2.·10 -6	g _{ee} <(0.7-1.9)·10 ⁻⁴			
n: spectral index, limits on half-life in years					
* Phase I+Phase II data					
** Phase I data, <i>R.Arnold et al. Nucl. Phys. A765 (2006) 483</i>					

Summary of NEMO 3

- ββ decay for ⁴⁸Ca, ⁹⁶Zr, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te and ¹⁵⁰Nd has been investigated, accurate measurement of half-lives has been performed.
- New limits on Ovßß decay
 - $100 \text{Mo} > 1.1 \cdot 10^{24} \text{y}$
 - ⁸²Se > 3.6·10²³ y
- have been obtained.
- NEMO-3 continues taking data up to end 2010, 0v sensitivity will be improved.

From NEMO3 to SuperNEMO

$$T_{1/2}(\beta\beta0\nu) > \ln 2 \times \frac{N_{avo}}{A} \times \frac{M \times \varepsilon \times T_{obs}}{N_{exclu}}$$

NEMO-3

SuperNEMO

$\frac{100}{1} M0}{T_{1/2}(\beta\beta 2\nu) = 7.10^{18} y}$	Choice of isotope	150 Nd or 82 Se $T_{1/2}(\beta\beta 2\nu) = 10^{20}$ y	
7 kg	Isotope mass M	100 - 200 kg	
$\epsilon(\beta\beta0\nu) = 8\%$	Efficiency E	$\epsilon(\beta\beta0\nu) \sim 30\%$	
$^{214}{ m Bi}$ < 300 μ Bq/kg $^{208}{ m Tl}$ < 20 μ Bq/kg	$N_{exclu} = f(BKG)$ Internal contaminations 208TL and 214Bi in the BB foil	$^{214}{ m Bi}$ < 10 μ Bq/kg $^{208}{ m Tl}$ < 2 μ Bq/kg	
$(^{208}\text{Tl}, ^{214}\text{Bi}) \sim 1 \text{ evt}/ 7 \text{ kg}/\text{y}$		$(^{208}\text{Tl}, ^{214}\text{Bi}) \sim 1 \text{ evt}/100 \text{ kg/y}$	
$\beta\beta 2\nu \sim 2 \text{ evts} / 7 \text{ kg} / y$	$\beta\beta(2\nu)$	$\beta\beta 2\nu \sim 1 \text{ evt} / 100 \text{ kg}/$	
FWHM(calo)=8% @3MeV		FWHM(calo)=4% @3MeV	
$T_{1/2}(\beta\beta0\nu) > 2.\ 10^{24} y$ <m<sub>ν> < 0.3 – 0.7 eV</m<sub>	SENSITIVITY	$T_{1/2}(etaeta 0 v) > 10^{26} y$ $< m_v > < 50 meV$	
1) β	β source production	2) Energy resoluti	
in R&D tasks: 3) R	adioprurity	4) Tracking	

SuperNEMO conceptual design

20 modules for 100 kg

Source (40 mg/cm²) 12m² Tracking (~2-3000 Geiger cells). Calorimeter (600 channels)

Total:~ 40 000 – 60 000 geiger cells channels ~ 12 000 PMT

SuperNEMO Status

Calorimeter: $\Delta E/E < 8\%$ at 1 Mev reached

Tracking (UK) : 90 cells prototype Wiring robot built Low radioactivity measurement: BiPo detector ²⁰⁸TI < 5 μBq/kg

Mechanical design : in progress Source purification: 2 methods

Extension project

MODANE UNDERGROUND LABORATORY 60'000 m³ EXTENSION

LABORATOIRE SOUTERRAINE DE MODANE AGRANDISSEMENT 60'000 m³

SuperNEMO in LSM

Source (40 mg/cm²) 12m²

Concluding remarks

- NEMO 3 succeeded to reach the required level of background (proposal).
- All backgrounds in NEMO 3 are completely understood.
- NEMO 3 is a good lesson for SuperNEMO to explore next goal of inverted hierarchy neutrino mass region (~50 meV).
- NEMO / SuperNEMO collaboration (80 physicists, 29 labs., 11 countries)
- SuperNEMO R&D's are going on next step: 1st prototype module at LSM (2011).