CANDLES for the study of ⁴⁸Ca double beta decay

OGAWA, Izumi(사기 泉) for the CANDLES collaboration

Candles

Oct. 13, 2009

DBD09

Outline

- 1. ELEGANT VI@Oto
- 2. CANDLES Project
 - 1. BG reduction/rejection
 - 2. CANDLES III@Osaka
 - 3. CANDLES III@Kamioka
- 3. R&D for future large detector
- 4. Summary

Double beta decay of ⁴⁸Ca

- Largest Q value (4.27 MeV)
 - next largest; ¹⁵⁰Nd (3.3 MeV)
 - large phase space factor
 - almost background free (γ : 2.6 MeV, β : 3.3 MeV)
- ♦ Low Natural abundance \rightarrow 0.187%
 - Iarge detector
 - enrichment

Next generation detector : fight against BG!

 $\langle m_{\nu} \rangle \propto T^{-1/2} \propto M_{\rm det}^{-1/2}$ if background free

 $\langle m_{\nu}
angle \propto T^{-1/2} \propto M_{\rm det}^{-1/4}$ if background limited

@ Oto Cosmo Observatory

Candles

4

Oct. 13, 2009

DBD09

Oct. 13, 2009

DBD09

ELEGANT VI (4π active shield) Candles

CANDLES

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer

undoped CaF₂ (CaF₂(pure)) • ⁴⁸Ca ($Q_{\beta\beta}$ =4.27 MeV) Atten. length > 1 m Low radioactive impurities Low background detector • 4π active shield (LS) Passive shield (Water, LS) Pulse shape information Good energy resolution large photo-coverage Two phase LS system

Background reduction/rejection Condles

External BG

- conventional shield = Water (rel. Low cost)
 4π active shield = LS and CaF₂
- energy window $(2\nu\beta\beta)$ (difference in decay time)
 - high energy resolution \leftarrow = High light collection Internal PC(ULTh) efficiency
- Internal BG(U, Th)

 - Reject successive decay events ($\beta \Rightarrow \alpha$) ■ Pulse shape information

BG reduction / rejection — 4π active shield —

Performance Test $(4\pi \text{ active shield})$

BG reduction / rejection — Energy resolution — (BG from 2νββ events)

Oct. 13, 2009

Improve light collection efficiency

- Keep high transparency for both(CaF₂(UV), LS(vis.)) scintillation light
 - CaF₂ crystal, LS, pure water, acrylic vessel,...
 - Undoped CaF₂ (attenuation length > 1m)
 - ◆ cf. CaF₂(Eu) ~10 cm
 - Shift wavelength of scintillation light from CaF_2 scintillators; UV \Rightarrow visible
 - Large photo-coverage
 - Large (13,17 inch) PMT

Oct. 13, 2009

Oct. 13, 2009

DBD09

Performance of two phase system candles

BG reduction / rejection — Internal BG (U, Th)—

Succesive decays in CaF₂ scintillator Candles

Development of High Purity CaF₂ Crystals Candles CaF₂(Eu) in ELEGANT VI **U-chain(**²¹⁴**Bi)** :1100 µBq/kg Th-chain(²²⁰Rn) : 98 μ Bq/kg U and Th (ICP-MS) Raw Materials CaCO₃, HF CaF₂ Powder Fused CaF₂ CaF₂ Crystal Radioactivities in CaF₂(pure) Crystal Radioactivities in CaF₂ Powder (α -ray measurement) (HPGe measurement) **Powder selection 101** crystals Crystal growing U-chain(²¹⁴Bi) \sim 36 μ Bq/kg ...1/30 of Previous Crystals (14±5 μ Bq/kg ;Best) Th-chain(220 Rn) ~28 μ Bq/kg ...1/3 of Previous Crystals ($6 \pm 1 \mu$ Bq/kg ;Best) Oct. 13, 2009 DBD09 18

Rejection of Double Pulse(DP) Condles

Typical Pulse Shapes

Pulse Shape Discrimination

Pulse Shape discrimination

Shape Indicator (PRC 67(2003) 014310)

CANDLES III (prototype)

- Constructed at Osaka Univ. (sea level)
 - small version for R&D
 - check the performance of CANDLES
- CaF₂ modules
 - 10³ cm³ × 60 crystal; 191 kg
 - with conversion phase
- Liquid scintillator
 - \$\phi1000 \times \$\hlip1000\$ acrylic container
- ♦ H₂O Buffer : passive shield
 - \$\phi2800 \times \$\hlip\$2600
- PMTs
 - 15" PMT (× 8) : R2018
 - 13" PMT (×32) : R8055

1 "calibration" crystal (#60) (High Contamination in U, Th) 65 mBq/kg (U-chain), 28 mBq/kg (Th-chain)

Oct. 13, 2009

CANDLES III (prototype)

CarF₂ module Cardles CaF₂ + conversion phase + acrylic case

half filled

filled

Index 1.44@586nm (CaF₂)

Index 1.46@586nm (Mineral Oil)

Oct. 13, 2009

DBD09

◆60 CaF₂ modules installed

DBD09

Rejection of LS Events

Rejection by using Pulse shape information Typical Pulse Shapes

Charge Ratio = $\frac{\text{charge in partial gate}}{\text{charge in full gate}}$

Oct. 13, 2009

27

Identification of CaF₂ signal (2)

Position reconstruction

Total charge of each PMT

Event Rate dependence on z-axiscondles

SLIVIO

- Background Rate near Q-value for each CaF₂ Crystal
 - after rough ratio cut
 - (LS events are rejected)

Oct. 13, 2009

DBD09

CANDLES III (U.G.) @Kamioka

Oct. 13, 2009

CANDLES III(U.G.)

Oct. 13, 2009

DBD09

Candles

CANDLES III (U.G.)

Oct. 13, 2009

DBD09

36

Candles

To reach IH mass region

Enlarge the detctor

- Purification of CaF₂ crystals ; <1 μ Bq/kg
 - further R&D is underway

Enrichment of ⁴⁸Ca

Chemical processing with Crown Ether

Crown Ether

- Held by electrostatic attraction between negatively charged O⁻ of the C-O dipoles & ion (Ca²⁺)
- How well the ion fits into the crown ring
- Liquid (aq-salt)-liquid (org-crown) extraction in isotopic equilibrium

⁴⁸Ca Enrichment by crown-ether Condles

Oct. 13, 2009

DBD09

Candles

CANDLES Collaboration

(i i	
-	۲	Osaka U. (大阪大学)
		T. Kishimoto, I. Ogawa, S. Umehara, K. Matsuoka, Y. Hirano, Y. Tsubota, G. Ito, K. Yasuda, H. Kakubata, M. Miyashita, M. Nomachi, Y. Kohno, M. Saka, S. Ajimura
		Fukui U. (福井大学)
		Y. Tamagawa, T. Hayashi, Y. Maekawa, S. Isogai, T. Sato, T. Jinno
	۲	Hiroshima U. (広島大学)
		R. Hazama
	۲	Kyoto Sangyo U.(京都產業大学)
		K. Okada
	۲	Saga U. (佐賀大学)
		H. Ohsumi
	۲	Tohoku U. (東北大学)
		S. Yoshida
	۲	Tokyo Institute of Technology (東京工業大学)
		Y. Fujii
	۲	U. Tokushima (徳島大学)
		K. Fushimi
	00	t. 13, 2009 DBD09