

MAJORANA Status

Perspetie di Pitore Maginatia matra dalla tenera na remainate -Dotata è a secondere nere

Jason Detwiler Lawrence Berkeley National Laboratory

DBD09 / HAW09 Waikoloa, HI Oct 13, 2009

Advantages of ⁷⁶Ge

- Intrinsic high-purity Ge detectors = source
- Excellent energy resolution: 0.16% at 2039 keV (4 keV ROI)
- Powerful background rejection: segmentation, timing, pulseshape discrimination
- Demonstrated ability to enrich from 7.44% to \geq 86%
- ⁷⁶Ge has the current best limit:

 $T_{\frac{1}{2}}^{0v} > 1.9 \times 10^{25} \text{ y} (90\% \text{ CL})$ H.V. Klapdor-Kleingrothaus *et al.*, Eur. Phys. J.A **12**, 147, (2001).

Ton-Scale Sensitivity

MAJORANA and GERDA

- Modular ^{enr}Ge arrays in electroformed Cu cryostats
- E-formed Cu / Pb passive shielding
- 4π plastic scintillator μ veto

- enrGe array submersed in LAr
- Water cherenkov μ veto
- Phase I: ~18 kg (H-M/IGEX xtals)
- Phase II: +20 kg segmented xtals
- Open exchange of knowledge and ideas (e.g. MaGe MC)
- Intend to merge for I-ton experiment using the best techniques

The MAJORANA DEMONSTRATOR

- 60-kg of Ge detectors required for sensitivity to background goal: I c/ROI/t/y
- 30-kg of 86% enriched ⁷⁶Ge crystals required for science goal: test the Klapdor-Kleingrothaus et al. claim
- Examine detector technology options: p-type point-contact detectors
- Initial module will have 3 cryostats; fast track 1st module thanks to institutional support
- Located underground at the 4850' level of Sanford Lab.

Point Contact Detectors

Hole v_{drift} (mm/ns) w/ paths, isochrones

30

20

50

40

900 ns

600 ns

300ns

20

10

0

-10

-20

0

10

Radius (mm)

Z (mm) Barbeau et al., JCAP 09 (2007) 009; Luke et al., IEEE trans. Nucl. Sci. 36 , 926(1989).

Point Contact Detectors

C. E. Aalseth et al., Phys. Rev. Let. 101, 251301 (2008); Z. Ahmed et al., arXiv:0902.4693 [hep-ex], J.I. Collar and M. G. Marino, arxiv:0903.5068 [hep-ex]

PPCs Studied / In Hand

Institution (Detector Name)	Dimensions	Mass	Resolution (1.33 MeV)	Manufacturer (Crystal Grower)	Impurity Gradient
U Chicago (PPC I)	50 mm Ø x 44 mm	460 g	1.82 keV	Canberra	2.8
PNNL (PPC II)	50 mm Ø x 50 mm	527 g	2.15 keV	Canberra	1.6
LBNL (SPPC)	62 mm Ø x 44 mm	800 g	2.11 keV	LBNL (AMETEK)	1.7
LANL (MJ70)	72 mm Ø x 37 mm	800 g	2.15 keV	PHD's (UMICORE)	0.8
ORNL (MJ60)	62 mm Ø x 46 mm	740 g	4-4.5 keV	PHD's (UMICORE)	1.2
U Chicago (BEGe)	"standard"	450 g	<2 keV	Canberra	
LBNL (Mini-PPCs)	20 mm Ø x 10 mm	17 g		LBNL (AMETEK)	
ORNL (Big BEGe)	90 mm Ø x 25 mm	850 g	1.95 keV	Canberra	
LANL (MJ BEGes)	70 mm Ø x 30 mm	579 g	<2.2 keV	Canberra	
LANL	60 mm Ø x 50 mm	770 g		ORTEC	

First Module

- 18 natural-Ge Canberra BEGe's
 - Ø = 70±2.5 mm, h = 30±2.5 mm
 - 579 g active mass
 - contact r < 6.5 mm (5 mm nom.)
 - Front surface metalized for HV
 - ~4 crystals per string
- Full scale demonstration of MAJORANA configuration
- Start counting $0\nu\beta\beta$ backgrounds
- Low-E physics

The First 18 BEGes

- I7 detectors delivered, accepted; I returned for refurbishment
- Storage system fabricated and used
- See talk by Gehman (DJI)

Cold Finger Assembly

Detector Mounts

- EFCu and plastic, minimizing part count
- Thermally shorted to coldplate
- HV on outer contact; possibly integrated filter capacitor

- Contact spring integrated into mount or front end board
- Currently iterating design and prototyping

Front Ends: Resistive Feedback

- Trace proximity provides
 ~I pF capacitance
- Silica or sapphire substrate provides thermal control
- Amorphous Ge resistor: deposit in H environment gives proper R at low T
- MX-11 FET, custom lownoise preamp
- Have achieved possibly world record low-noise for this kind of circuit

Cables

13

- Parylene coated extruded Cu flex cables
- Other options: picocoax, CuFlon / PEN / Kapton-based flex cables, parylenecoated twisted pairs
- Cable connection options: wire (fusion) bond, dimpled pressure connection, conducting adhesive, e-beam welding

 Exploring SIS alternatives as a backup

Cryostat

- Coldplate / cryostat design and prototyping underway
- Thermal / mechanical / electrical testing and integration in the LANL Canary Cage

Canary Cage

Time [days]

Temperature [K]

Mechanical Systems

- Shield and monolith engineering underway
- 86% of Pb is in hand

Site Facilities

- Current layout: EFCu, detector facilities, and machine shop in one campus at 4850' level in new drift to Davis cavity (LUX)
- Excavation underway; beneficial occupancy anticipated April 2010
- Temporary lab for EFCu starting Jan 2010, funded by NSF

Davis Campus, 4850' level, near Yates shaft

Enriched Germanium

- UMICORE not interested in processing enriched Ge
- Fully costed plan to establish a small processing facility in Oak Ridge. Working with contractor team
- USD received SD funding for a UG crystal pulling lab
- Continue to monitor alternative enrichment methods, but gas centrifuge is still (highly) favored

Materials and Assay

- Campaign to further reduce limits on backgrounds in EFCu (previous best: ~0.7 µBq/kg ²³²Th, addressing bath purity)
- Procured enough NXT-85 plastic for detector supports; verified purity via INAA
- Cables and electronics materials screening by ICPMS in Russia (now)
- Most Pb in-hand, gamma counting / ICPMS program planned.

Materials Specifications

Material	Uses	Contaminant Goals	Equivalent Achieved Assay	Reference
Germanium	Detectors	<100 days ⁶⁸ Ge exp. <30 days ⁶⁰ Co exp.	N/A	[Avi92]
Electroformed Copper	Detector Mounts, Cryostat, Inner Cu Shield	<0.1 μBq/kg ²⁰⁸ TI <0.3 μBq/kg ²¹⁴ Bi	0.2 ± 0.1 μBq/kg	[Hop09]
Commercial Copper	Outer Cu Shield	<0.3 µBq/kg ²⁰⁸ TI <3 µBq/kg ²¹⁴ Bi	<0.3 μBq/kg <36 μBq/kg	[Hop09], [Leo08]
Lead	Lead Shield	<1 µBq/kg ²⁰⁸ Tl <10 µBq/kg ²¹⁴ Bi	<Ι μBq/kg <Ι0 μBq/kg	[Leo08]
Plastic	Detector Mounts, Insulation	<0.4 µBq/kg ²⁰⁸ TI <10 µBq/kg ²¹⁴ Bi	<0.4 μBq/kg <10 μBq/kg	[Bac09], [Leo08]
Small Components	Front-End Electronics, Contacts	<3 nBq/chan. ²⁰⁸ TI <20 nBq/chan. ²¹⁴ Bi	<3 nBq/chan. <20 nBq/chan.	[Loa09], [Leo08]
Cables	Signal, High- Voltage	<30 μBq/kg ²⁰⁸ TI <160 μBq/kg ²¹⁴ Bi	<30 μBq/kg <160 μBq/kg	[Det08], [Hop09], [Leo08]

Background Model

- Updates from 2006:
 - Lower granularity (x2)
 - Internal front-ends
 - Increased internal Cu
 - Backgrounds from new components / materials
- Background Simulation Campaign:Winter 2009-2010
 - DEMONSTRATOR geometry
 - Full-spectrum background model

- Low-Energy Backgrounds:
 - Cosmogenics (Ge isotopes, ⁶⁵Zn, ⁷³As, ³H...)
 - Low-E compton from U,Th, K
 - ²¹⁰Pb bremsstrahlung
 - ... learn more with the MJDEM.

Background Budget (cont.)

Background Source		Radioactive Isotope [counts/ROI/t/y]		Total Background [c/ROI/t/y]
Enriched	68Ge	⁶⁰ Co	²³² Th/ ²³⁸ U	
Germanium Crystals	0.56	0.06	0.30	0.92
Natural Germanium Crystals	68Ge	60 Co	²³² Th/ ²³⁸ U	
	~75	~2	0.3	//
	²⁰⁸ TI	²¹⁴ Bi		
Detector Mounts	0.03	0.02		0.05
Front-Ends	²⁰⁸ TI	²¹⁴ Bi		
Contacts	0.01	7×10 ⁻³		0.02
Cables	²⁰⁸ TI	²¹⁴ Bi	60 Co	
	0.02	7×10 ⁻³	6×10 ⁻³	0.03

Background Budget (cont.)

Background Source		Total Background [c/ROI/t/y]		
Cryostat and	²⁰⁸ TI	²¹⁴ Bi		
Shield	0.37	0.13		0.50
Outer Copper	²⁰⁸ TI	²¹⁴ Bi	60 Co	0.20
Shield	0.06	0.10	0.03	0.20
	²⁰⁸ TI	²¹⁴ Bi		
Lead Shield	0.10	0.16		0.26
Prompt	(n,n' γ)	Ge(n,n)	Direct µ, Other	
Cosmogenics	~0.8	~0.1	~0. I	
Other	Surface α	External γ , (α,n)	2 vββ , n, Other	
	0.05	~0.1	~0.01	0.16
		T = 4		2.2

Total for enriched Ge: 3.2

DEMONSTRATOR Sensitivity

DEMONSTRATOR Schedule

- Institutional support has propelled us into motion over the last year
- Making progress on technical designs, background goal
- On track for full DOE support starting this fiscal year

Extra Slides

Neutrinoless Double-Beta Decay

 $v = \overline{v} \rightarrow$ Lepton number violation \rightarrow Leptogenesis Double-beta decay is currently the only practical method of determining if v are Majorana particles.

Claimed Observation

Klapdor Kleingrothaus et al., Mod. Phys. Lett. A **21** (2006) p 1547.

Recent Experiments

Slow-Rise Pulses

- Small percent of pulses with slow rollup, possibly ubiquitous in PC detectors
- Kinked slow-roll pulses in MJ60 consistent with charged open surface with slower hole mobility
- Energy-, position-, surface-prepdependence under investigation

PPC Charge Collection R&D

- ⁵⁷Co scan shows rapidly dropping efficiency near the detector back
- Consistent with drift trajectories being "blocked" by ditches

Surface Passivation R&D

- Mini-PPCs in T-variable cryostat
- Surface passivation recipe that didn't work for SPPC works for mini PPC, but gives different performance on identical mini PPCs
- Spectral variations consistent with charge trapping on passivated surface
- Investigate as a function of passivation recipe

Point Contact Detector R&D

Detectors studied / in hand:

Institution (Detector Name)	Dimensions	Mass	Resolution (1.33 MeV)	Manufacturer (Crystal Grower)	Impurity Gradient
U Chicago (PPC I)	50 mm Ø x 44 mm	460 g	1.82 keV	Canberra	2.8
PNNL (PPC II)	50 mm Ø x 50 mm	527 g	2.15 keV	Canberra	1.6
LBNL (SPPC)	62 mm Ø x 44 mm	800 g	2.11 keV	LBNL (AMETEK)	1.7
LANL (MJ70)	72 mm Ø x 37 mm	800 g	2.15 keV	PHD's (UMICORE)	0.8
ORNL (MJ60)	62 mm Ø x 46 mm	740 g	4-4.5 keV	PHD's (UMICORE)	1.2
U Chicago (BEGe)	"standard"	450 g	<2 keV	Canberra	
LBNL (Mini-PPCs)	20 mm Ø x 10 mm	17 g		LBNL (AMETEK)	
ORNL (Big BEGe)	90 mm Ø x 25 mm	850 g	1.95 keV	Canberra	
LANL (MJ BEGes)	70 mm Ø x 30 mm	579 g	<2.2 keV	Canberra	
LANL	60 mm Ø x 50 mm	770 g		ORTEC	

Further planned PPCs for R&D

- Canberra BEGe for low-BG low-E studies
- Inverted-coax PPC \longrightarrow
- MJ "first module"-like BEGe for testing

SEGA

- 4x2 segmented n-type ^{enr}Ge detector
- Electroforming detector mount components at PNNL; baths functional, maybe making parts now
- WIPP visit, training
- Install in WIPP ASAP

Other R&D

- Neutron interaction simulations
- Cross-beam characterization
- Rn deposition on crystal surfaces

Chao's G4 bug report 1058

* G4Track Information: Particle = neutron, Track ID = 1, Parent ID = 0

Step	# X	Y	Z I	KineE dE	Step	StepLeng	TrakLeng	Volume	Process
0	-10 cm	0 fm	$0 \mathrm{fm}$	2 MeV	0 eV	0 fm	0 fm	Air initS	tep
1	-5 cm	0 fm	0 fm	2 MeV	$0 \mathrm{eV}$	5 cm	5 cm	Air Trans	portation
2	8.01 mm	0 fm	0 fm	0 eV	0 eV	5.8 cm	10.8 cm	Germanium	NeutronInelastic
:	List of	2ndaries	- #Spav	wnInStep=	6(Res	st= 0,Alon	g= 0,Post=	6), #Spawn	Гotal= 6
:	8.01 mm	0 fm	0 fm	1.38 MeV	/ neut	ron			
:	8.01 mm	0 fm	0 fm	27.8 keV	Ge74[0.0]			
:	8.01 mm	0 fm	0 fm	596 keV	gan	nma			_
:	8.01 mm	0 fm	0 fm	370 eV	gam	ma	nexpe	ected	
:	8.01 mm	0 fm	0 fm	10.7 eV	gam	ma	mmo	linos	
:	8.01 mm	0 fm	0 fm	10.7 eV	gam	ma <mark>8</mark> 9			

EndOf2ndaries Info -----

- a badranaund abana atanizatian
- Surface alpha background characterization
- Homestake backgrounds characterization

Surface Alphas

N-type detector, collimated ²⁴¹Am source data

Pulse-Shape Analysis

χ²-Based Pulse-Shape Analysis

- Single-site event basis:
 - $-\gamma$ coincidence
 - cross-beam data
 - flood field data
 - simulation

