COBRA: Status and future plans

Jerrad Martin

on behalf of the COBRA Collaboration

- Neutrinoless Double Beta Decay
- CdZnTe Detectors
- COBRA
 - The Experiment
 - Results
 - Event Tracking
 - Summary and Outlook

COBRA: Status and future plans

Jerrad Martin

on behalf of the COBRA Collaboration

- Neutrinoless Double Beta Decay
- CdZnTe Detectors
- COBRA
 - The Experiment
 - Results
 - Event Tracking
 - Summary and Outlook

COBRA Collaboration (Zuber et al.)

Washington University in Saint Louis

Czech Technical University Prague

Comenius University in Bratislava University of Jyväskylä

National University of La Plata

Joint Institute for Nuclear Research

Observer status: University of Hamburg (Germany), Jagiellonian University (Poland), Urbana Champaign (USA), Los Alamos National Laboratory (USA).

Neutrinoless Double Beta Decay

What are the neutrino rest masses? $(T_{1/2}^{0\nu})^{-1} = G^{0\nu}M_{0\nu}^2\left(\frac{\langle m_{\nu}\rangle}{m_e}\right)$

Is the neutrino Dirac or Majorana?

May lepton number conservation be broken?

 $(Z, A) \rightarrow (Z + 2, A) + 2e^{-2}$ $\Delta L = 2$

- Source = detector
 - Multiple isotopes
- ¹¹⁶Cd above 2.614 Mev
- Semiconductor
- Maturing technology
- Modular
- Room temperature

Isotope	% Abun	Q (keV)	Mode
Zn-70	0.62	1001	β-β-
Cd-114	28.7	534	β⁻β⁻
Cd-116	7.5	2805	β-β-
Te-128	31.7	868	β-β-
Te-130	33.8	2529	β-β-
Zn-64	48.6	1096	β ⁺ /EC
Cd-106	1.21	2771	β+β+
Cd-108	0.9	231	EC/EC
Te-120	0.1	1722	β ⁺ /EC

 $T_{1/2} \propto a \varepsilon \sqrt{\frac{Mt}{\Lambda EB}}$

- Source = detector
 - Multiple isotopes
- ¹¹⁶Cd above 2.614 Mev
- Semiconductor
- Maturing technology
- Modular
- Room temperature

Isotope	% Abun	Q (keV)	Mode
Zn-70	0.62	1001	β⁻β⁻
Cd-114	28.7	534	β⁻β⁻
Cd-116	7.5	2805	β⁻β⁻
Te-128	31.7	868	β⁻β⁻
Te-130	33.8	2529	β⁻β⁻
Zn-64	48.6	1096	β ⁺ /EC
Cd-106	1.21	2771	β+β+
Cd-108	0.9	231	EC/EC
Te-120	0.1	1722	β ⁺ /EC

 $T_{1/2} \propto a \varepsilon \sqrt{\frac{Mt}{\Lambda EB}}$

- Source = detector
 - Multiple isotopes
- ¹¹⁶Cd above 2.614 Mev
- Semiconductor
- Maturing technology
- Modular
- Room temperature

	STREET, ST		
Isotope	% Abun	Q (keV)	Mode
Zn-70	0.62	1001	β⁻β⁻
Cd-114	28.7	534	β⁻β⁻
Cd-116	7.5	2805	β-β-
Te-128	31.7	868	β⁻β⁻
Te-130	33.8	2529	β-β-
Zn-64	48.6	1096	β ⁺ /EC
Cd-106	1.21	2771	β+β+
Cd-108	0.9	231	EC/EC
Te-120	0.1	1722	β ⁺ /EC

 $T_{1/2} \propto a \varepsilon \sqrt{\frac{Mt}{\Lambda EB}}$

- Source = detector
 - Multiple isotopes
- ¹¹⁶Cd above 2.614 Mev
- Semiconductor
- Maturing technology
- Modular
- Room temperature

 $T_{1/2} \propto a \varepsilon \sqrt{}$

 $\left| \frac{Mt}{\Delta EB} \right|$

- Source = detector
 - Multiple isotopes
- ¹¹⁶Cd above 2.614 Mev
- Semiconductor
- Maturing technology
- Modular
- Room temperature

Si, Ge detectors

ρ

Å

- Source = detector
 - Multiple isotopes
- ¹¹⁶Cd above 2.614 Mev
- Semiconductor
- Maturing technology
- Modular
- Room temperature

1x1x1 cm³ Coplanar Grid

2x2x0.5 cm³ Small pixels

- Source = detector
 - Multiple isotopes
- ¹¹⁶Cd above 2.614 Mev
- Semiconductor
- Maturing technology
- Modular
- Room temperature

CZT Detectors

(Luke, 1994)

Coplanar Grid CZT

Good energy resolution

Simple 3 channel readout

2 anode, 1 cathode

X No location of interaction info.

1.5-5% FWHM

(Barret, Eskin, & Barber, 1995)

Pixelated CZT

Superior energy resolution

- 🗙 Complex readout
 - 64 channels or more
 - 3D LOI information
 - 2D from pixels, depth from A/C Event tracking

COBRA: The experiment

Gran Sasso National Lab Italy

COBRA

CUORE

GERDA

3500 m.w.e.

cosmic rays, neutrons and natural decays

Tuesday, October 13, 2009

COBRA: The experiment

First Prototype 2x2 1cm³ detectors About 8 kg·days at LNGS

Current Generation 4x4 1cm³ detectors

Soon to be 4x4x4...

Background Reduction

Plastic holders
 Delrin
 Wires
 Kapton foil
 Radon in the air
 N₂ flushing

- Crystal passivation paint
 - ➡ Cleaner paint

Background Reduction

- Plastic holders
 - → Delrin
- Wires
 - ➡ Kapton foil
- Radon in the air
 - ➡ N₂ flushing

- Background fewer than 5 counts/keV/kg/yr Crystal passivation paint at 2.8 MeV
 - ➡ Cleaner paint

Published Results

4-fold non-unique beta decay of ¹¹³Cd

10 independent measurements from 4x4 system: J.V. Dawson et al., Nucl. Phys. A 818, 264 (2009)

Half-life: $T_{1/2} = 8.00 \pm 0.11(stat.) \pm 0.24(sys.) \times 10^{15}$ years

Q-value: $322 \pm 0.3(stat.) \pm 0.9(sys.)$ keV

Published Results

• Six limits above 10²⁰ years

One world best*

• Three within factor of 3

Isotope and Decay	Fit Range	$T_{1/2}$ limit (years)	
	(MeV)	This work	Previous [14]
¹¹⁶ Cd to gs	2.2 - 3.2	9.4×10^{19}	3.14×10^{19}
130 Te to gs	2.2 - 3.2	5.0×10^{20}	9.92×10^{19}
$^{130}\mathrm{Te}$ to 536 keV	1.7 - 2.3	3.5×10^{20}	$3.73 imes 10^{19}$
^{116}Cd to $1294\mathrm{keV}$	1.2 - 1.8	$5.0 imes 10^{19}$	4.92×10^{18}
^{116}Cd to 1757 keV	0.9 - 1.3	4.2×10^{19}	9.13×10^{18}
¹²⁸ Te to gs	0.6 - 1.3	1.7×10^{20}	5.38×10^{19}
${\rm ^{116}Cd} \ {\rm to} \ 2027 {\rm keV}$	0.5 - 1.2	2.8×10^{19}	1.37×10^{19}
${\rm ^{116}Cd} \ {\rm to} \ 2112 {\rm keV}$	0.5 - 1.0	4.7×10^{19}	1.08×10^{19}
^{116}Cd to $2225keV$	0.5 - 1.0	2.1×10^{19}	9.46×10^{18}
$^{130}\mathrm{Te}$ to $1794\mathrm{keV}$	0.5 - 1.2	1.9×10^{20}	3.1×10^{18} [15]
$^{130}\mathrm{Te}$ to $1122\mathrm{keV}$	1.1 - 1.7	1.2×10^{20}	1.4×10^{19} [15]
¹¹⁴ Cd to gs	0.4 - 1.0	2.0×10^{20}	6.4×10^{18} [15]

from a total of 18 kg-days of data

Isotope and Decay	Fit Range	$T_{1/2}$ limit (years)	
	(MeV)	This work	Previous [14]
64 Zn β^+ EC to gs	0.5 - 1.3	1.1×10^{18}	2.78×10^{17}
120 Te β^+ EC to gs	1.0 - 2.0	4.1×10^{17}	1.21×10^{17}
120 Te 2EC	0.8 - 2.0	2.4×10^{16}	2.68×10^{15}
120 Te 2EC to 1171 keV	0.6 - 2.0	1.8×10^{16}	9.72×10^{15}
106 Cd $\beta^+\beta^+$ to gs.	0.5 - 2.0	2.7×10^{18}	4.50×10^{17}
106 Cd β^+ EC to gs	1.5 - 3.0	4.7×10^{18}	7.31×10^{18}
$^{106}Cd \ 2 EC$ to gs	2.0 - 3.0	1.6×10^{17}	5.7×10^{16}
$^{106}\mathrm{Cd}\;\beta^+\beta^+$ to $512\mathrm{keV}$	0.6 - 1.5	9.4×10^{17}	1.81×10^{17}
$^{106}\mathrm{Cd}\;\beta^+\mathrm{EC}$ to $512\mathrm{keV}$	0.8 - 2.0	4.6×10^{18}	9.86×10^{17}

J.V. Dawson et al., arXiv:0902.3582

Event Tracking

- Sub-mm spatial resolution
- Differentiate between:
 - alphas
 muons
 - electrons
 gammas
- Two options
 - Timepix
 - Custom ASIC system

14x14x0.3mm Si 5.5 µm pixels

Event Tracking

- Sub-mm spatial resolution
- Differentiate between:
 - alphas
 muons
 - electrons
 gammas
- Two options
 - Timepix
 - Custom ASIC system

No gammas, quenching/degradation Smeared at 2.3%

Timepix

- Medipix chip enhanced with pulse height ADC
- 65,000 channels
- 1.4x1.4 cm², direct
- 256x256 5.5µm pixe
- Si: 300 µm thick (da
- CdTe: 1 mm (develop

• CZT: 10 mm thick???

Tuesday, October 13, 2009

1 4

²¹⁴Bi alpha-beta coincidence?

	256		
0.25	0.5	0.75	1

Charge Diffusion

With

Without

MC Simulated 0vββ event 20x20x5 mm CZT with 200 µm pixels

Pixelated CZT at WUSTL

Class-100 Clean Room
Br Wet Bench
Photolithograph
50-2500 µm pixel pitches
e-Beam Evaporator

Mosaic" readout system
64 channels, low noise
Developed at WU
uses NCI-ASICs (BNL)
Installation at LNGS: Nov '09

Large Scale Experiment

16,000 2x2x1 cm³ detectors
420 kg of 90% ¹¹⁶Cd enriched CZT
32x10⁶ 350 µm pixels

Summary and Outlook

- COBRA is a unique 0vββ experiment
- CZT semiconductor detectors
 - Excellent energy resolution
 - ¹¹⁶Cd has Q-value of 2.8 MeV
- Currently running 16 cm³ of CZT at LNGS
- Currently developing detectors with sub-mm spatial resolution
- New funding expected from DFG this month
- Proposal for large scale experiment: 2012