
The Daya Bay Calibration System

Kimberly Boddy
on behalf of the Daya Bay Collaboration

Caltech

DBD 2009: Session II
12 October 2009

Kimberly Boddy (Caltech) The Daya Bay Calibration System DBD 2009 1 / 18



Outline

1 Systematic Uncertainties

2 Automated Calibration Units

3 Simulations of Calibration Sources

4 Concluding Remarks

Kimberly Boddy (Caltech) The Daya Bay Calibration System DBD 2009 2 / 18



Systematic Uncertainties

Requirements on Systematic Uncertainties
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Sensitivity goal: sin2 2θ13 < 0.01

Np relative uncertainty: 0.3%
Attained using load cells and Coriolis mass
and volume flow meters

ε relative uncertainty: 0.2%
Key requirement of calibration program

40 Ton
Mixing Tank

FarNear
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Systematic Uncertainties

IBD Detection

Detect ν̄s via inverse beta-decay in 20 tons of 0.1% Gd-doped LS:

IBD threshold: E thr
ν̄ = 1.806 MeV

ν̄e + p → e+ + n

Prompt Signal: e+ + e− → 2γ
Delayed Signal:
n + Gd→ Gd + γ (∼8 MeV) [∼50,000 barns]
n + p → d + γ (2.2 MeV) [0.3 barns]
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Systematic Uncertainties

Detector Efficiency Calibration

Positron detection:

Energy cuts at 1 and 8 MeV

Neutron detection:

Energy cuts at 6 and 10 MeV

Delayed timing cuts [0.3 µs, 200 µs]

Gd/H ratio

To achieve 0.2% on detector efficiency, need to
know e+ relative threshold to 2% (easy) and
relative n threshold to 1% (more difficult).

Calibration program:

� Routine (weekly) deployment of calibration sources
� Radioactive sources → fixed energy

LED light source → fixed time
� Tagged cosmogenic background
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Automated Calibration Units
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Automated Calibration Units

Automated Calibration Units (ACU)

3 ACUs: LS and on-/off-axis GdLS
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Automated Calibration Units

Automated Calibration Units

Source deployment (speed ×5):

Loading...
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Sample_Deployment.avi
Media File (video/avi)



Automated Calibration Units

Calibration Sources

Positron source:
68Ge

EC−−→ 68Ga
β+

−−→ 68Zn
Rate: 100 Bq (T1/2=270 days)
⇒ Positron threshold
⇒ Relative PMT quantum
efficiencies

LED source (deployed):
430 nm LED in 3/4” nylon
diffuser ball
⇒ PMT timing, gain
⇒ Optical properties
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Automated Calibration Units

Calibration Sources

Fixed LEDs in mineral oil to monitor reflectors and attenuation length.

2” PMT (×6)

Fixed LEDs
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Automated Calibration Units

Calibration Sources

Neutron source:
241Am (α) + 13C→ n + 16O
Rate: 0.5 Hz
Attenuate α to < 4.5 MeV with
Au foil to suppress excited 16O
(6.13 MeV)
⇒ Neutron energy scale
⇒ e+ threshold

Gamma source:
60Co → 1.173 + 1.333 MeV
Rate: 150 Bq
⇒ Energy calibration
⇒ Monitor light
yield/attenuation
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Automated Calibration Units

Spallation from Cosmogenic Muons

Use spallation neutrons to determine stability of detectors.

Near Far

Neutrons 13500/day/AD 1100/day/AD
12B 300/day/AD 28/day/AD

σE/E = 0.5% 1 day/AD 10 days/AD
per pixel
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Energy stability (relevant
to neutron capture ε):
σE/E ∼ 0.5%
12B β-decay:
T1/2 = 20.2 ms and
Q = 13.4 MeV
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Automated Calibration Units

Additional Calibration Systems

Manual calibration: CIAE MO clarity: CUHK and HKU
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Simulations of Calibration Sources

Deployed Neutron Source

Energy spectrum of AmC + 60Co source at center of AD with
backgrounds from stainless steel tank and PMTs:
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Simulations of Calibration Sources

Deployed Positron Source

Energy spectrum of 68Ge source at center of AD with backgrounds
subtracted:
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Ge Source

positron annihilation 1.022 MeV
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Concluding Remarks

Outline

1 Systematic Uncertainties

2 Automated Calibration Units

3 Simulations of Calibration Sources

4 Concluding Remarks

Kimberly Boddy (Caltech) The Daya Bay Calibration System DBD 2009 17 / 18



Concluding Remarks

Status Report

Fabrication of first 2 ACUs complete - delivered in August

Longevity tests performed (4 years worth of deployment)

Software complete and undergoing testing

Test during AD dry run

Ge source: Ready
Co source: Ready
AmC source: Prototyped, developing protocol for assembly and
shipment
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Backup Slides



Background from Neutron Source in ACU

Limit neutron source to 0.5 Hz

∼ 1-2% of neutrons from AmC source
in ACU create signal in AD

Accidental bkg rate (event/day/AD) 1.20
(DB) Acc/IBD event rate (%) 0.19
(LA) Acc/IBD event rate (%) 0.18
(Far) Acc/IBD event rate (%) 1.33

Investigating correlated background rate



IBD Detection Efficiency

Positron Detection Efficiency

Low-energy cut: 68Ge source (two 511 keV γs)

High-energy cut: nGd capture (8 MeV)

Neutron Detection Efficiency εn = PGdεE εt

PGd = 1/(1 + ΓH/ΓGd)
Measure τ = 1/Γ to 0.5% ⇒ provide relative value of PGd to 0.1%
uncertainty

εE energy cut efficiency:

1% energy scale uncertainty leads to 0.2% uncertainty in εE
Negligible uncertainty due to high-energy cut

εt time cut efficiency:
Event window [0.3 µs,200 µs] can be determined to ∼10 ns precision
by using common master clock for all electronics



Reducing Systematic Uncertainties

Source of uncertainty Chooz Daya Bay (relative)
(absolute) Baseline Goal

# protons 0.8 0.3 0.1

Detector Energy cuts 0.8 0.2 0.1
Efficiency Position cuts 0.32 0.0 0.0

Time cuts 0.4 0.1 0.03
H/Gd ratio 1.0 0.1 0.1
n multiplicity 0.5 0.05 0.05
Trigger 0 0.01 0.01
Live time 0 <0.01 <0.01

Total detector-related uncertainty 1.7% 0.38% 0.18%

All numbers are in percent.
Chooz has a one-detector absolute uncertainty.
Daya Bay will have a two-detector relative uncertainty.



LabVIEW Software



LabVIEW Software
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