

Kimberly Boddy on behalf of the Daya Bay Collaboration

Caltech

DBD 2009: Session II 12 October 2009

Kimberly Boddy (Caltech)

The Daya Bay Calibration System

DBD 2009 1 / 18

3 🕨 🖌 3

Outline

- 2 Automated Calibration Units
- 3 Simulations of Calibration Sources
- 4 Concluding Remarks

ELE NOR

Requirements on Systematic Uncertainties

- Sensitivity goal: $\sin^2 2\theta_{13} < 0.01$
- N_p relative uncertainty: 0.3% Attained using load cells and Coriolis mass and volume flow meters
- *ϵ* relative uncertainty: 0.2%
 Key requirement of calibration program

(B)

EL OQO

IBD Detection

Detect $\bar{\nu}$ s via inverse beta-decay in 20 tons of 0.1% Gd-doped LS:

IBD threshold: $E_{\bar{\nu}}^{thr} = 1.806 \text{ MeV}$ $\bar{\nu}_e + p \rightarrow e^+ + n$

 $\begin{array}{ll} \mbox{Prompt Signal: } e^+ + e^- \rightarrow 2\gamma \\ \mbox{Delayed Signal:} \\ n + \mbox{Gd} \rightarrow \mbox{Gd} + \gamma \; (\sim \! 8 \; \mbox{MeV}) & [\sim \! 50,\! 000 \; \mbox{barns}] \\ n + p \rightarrow d + \gamma \; (2.2 \; \mbox{MeV}) & [0.3 \; \mbox{barns}] \end{array}$

Detector Efficiency Calibration

Positron detection:

• Energy cuts at 1 and 8 MeV

Neutron detection:

- Energy cuts at 6 and 10 MeV
- Delayed timing cuts [0.3 μ s, 200 μ s]
- Gd/H ratio

To achieve 0.2% on detector efficiency, need to know e^+ relative threshold to 2% (easy) and relative *n* threshold to 1% (more difficult).

Calibration program:

- Routine (weekly) deployment of calibration sources
- ◊ Radioactive sources → fixed energy LED light source → fixed time
- Tagged cosmogenic background

Outline

4 Concluding Remarks

Automated Calibration Units

Automated Calibration Units (ACU)

Automated Calibration Units

Automated Calibration Units

Source deployment (speed \times 5):

Loading...

Calibration Sources

- Positron source: ${}^{68}\text{Ge} \xrightarrow{\text{EC}} {}^{68}\text{Ga} \xrightarrow{\beta^+} {}^{68}\text{Zn}$ Rate: 100 Bq (T_{1/2}=270 days) \Rightarrow Positron threshold \Rightarrow Relative PMT quantum efficiencies
- LED source (deployed): 430 nm LED in 3/4" nylon diffuser ball
 - \Rightarrow PMT timing, gain
 - \Rightarrow Optical properties

Calibration Sources

Fixed LEDs in mineral oil to monitor reflectors and attenuation length.

= nar

(3)

Calibration Sources

- Neutron source: 241 Am (α) + 13 C \rightarrow n + 16 O Rate: 0.5 Hz Attenuate α to < 4.5 MeV with Au foil to suppress excited 16 O (6.13 MeV) \Rightarrow Neutron energy scale
 - $\Rightarrow e^+$ threshold

- Gamma source: ${}^{60}\text{Co} \rightarrow 1.173 + 1.333 \text{ MeV}$
 - Rate: 150 Bq
 - \Rightarrow Energy calibration

11 / 18

- \Rightarrow Monitor light
- ${\it yield/attenuation}$

Spallation from Cosmogenic Muons

Use spallation neutrons to determine stability of detectors.

	Near	Far	
Neutrons	13500/day/AD	1100/day/AD	
¹² B	300/day/AD	28/day/AD	
$\sigma_E/E = 0.5\%$	1 day/AD	10 days/AD	
per pixel			

- Spallation products uniformly distributed
- 100 pixels/detector
- Energy stability (relevant to neutron capture ϵ): $\sigma_E/E \sim 0.5\%$

•
$${}^{12}B \ \beta$$
-decay:
 ${\cal T}_{1/2} = 20.2 \ {\rm ms} \ {\rm and} \ Q = 13.4 \ {\rm MeV}$

Additional Calibration Systems

Manual calibration: CIAE

MO clarity: CUHK and HKU

▲□ ▲ □ ▲ □ ▲ □ ▲ □ ■ □

Outline

Automated Calibration Units

4 Concluding Remarks

I= nan

Deployed Neutron Source

Energy spectrum of $AmC + {}^{60}Co$ source at center of AD with backgrounds from stainless steel tank and PMTs:

Deployed Positron Source

Energy spectrum of $^{68}\mbox{Ge}$ source at center of AD with backgrounds subtracted:

= 200

(4) (3) (4) (4) (4)

Outline

2 Automated Calibration Units

4 Concluding Remarks

= 200

< 注 → < 注

- 一司

Status Report

- Fabrication of first 2 ACUs complete delivered in August
- Longevity tests performed (4 years worth of deployment)
- Software complete and undergoing testing
- Test during AD dry run
- Ge source: Ready Co source: Ready AmC source: Prototyped, developing protocol for assembly and shipment

Backup Slides

Background from Neutron Source in ACU

Limit neutron source to 0.5 Hz

 \sim 1-2% of neutrons from AmC source in ACU create signal in AD

Accidental bkg rate (event/day/AD)	1.20
(DB) Acc/IBD event rate (%)	0.19
(LA) Acc/IBD event rate (%)	0.18
(Far) Acc/IBD event rate (%)	1.33

Investigating correlated background rate

IBD Detection Efficiency

Positron Detection Efficiency

- Low-energy cut: ^{68}Ge source (two 511 keV $\gamma\text{s})$
- High-energy cut: *n*Gd capture (8 MeV)

Neutron Detection Efficiency $\epsilon_n = P_{Gd} \epsilon_E \epsilon_t$

- $P_{Gd} = 1/(1 + \Gamma_H/\Gamma_{Gd})$ Measure $\tau = 1/\Gamma$ to 0.5% \Rightarrow provide relative value of P_{Gd} to 0.1% uncertainty
- ϵ_E energy cut efficiency:
 - 1% energy scale uncertainty leads to 0.2% uncertainty in ϵ_E
 - Negligible uncertainty due to high-energy cut
- ϵ_t time cut efficiency:

Event window [0.3 $\mu s,200~\mu s]$ can be determined to ${\sim}10$ ns precision by using common master clock for all electronics

Reducing Systematic Uncertainties

Source of uncertainty		Chooz	Daya Bay (<i>relative</i>)	
		(absolute)	Baseline	Goal
# protons		0.8	0.3	0.1
Detector	Energy cuts	0.8	0.2	0.1
Efficiency	Position cuts	0.32	0.0	0.0
	Time cuts	0.4	0.1	0.03
	H/Gd ratio	1.0	0.1	0.1
	n multiplicity	0.5	0.05	0.05
	Trigger	0	0.01	0.01
	Live time	0	<0.01	< 0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%

All numbers are in percent.

Chooz has a one-detector absolute uncertainty.

Daya Bay will have a two-detector relative uncertainty.

LabVIEW Software

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LabVIEW Software

