Application of thin Nal(TI) scintillator for rare decay physics

Ken-Ichi Fushimi

The Univ. of Tokushima

JAPAN

Application of Nal for nuclear rare processes

- Double beta decay
 - Good energy resolution
 - Larger backscattering of electron
- Solar neutrino
 - ¹²⁷I is sensitive to low energy neutrino
 - ${}^{127}\text{I} + \nu \rightarrow {}^{127}\text{Xe} + e^- Q_{\text{EC}} = 0.789 \text{MeV}$
 - Followed by γ rays=124.75keV
- Dark matter
 - Large scattering cross section
 - Sensitive to various types of coupling

Double Beta Decay

•Serious background

- $2\nu\beta\beta$ events overlap
- •Better energy resolution

$$\left\langle m_{\nu} \right\rangle \propto \left(\frac{b\Delta E}{Mt_{live}} \right)$$

 $\sigma = 1.7 \%$

Low energy Solar Neutrino

•
$${}^{127}I + v_e \rightarrow {}^{127}Xe^* + e^-$$

• $^{127}Xe^* \rightarrow ^{127}Xe + \gamma$

W.C.Haxton, PRL68(1988)768 J.Engel et al., PRC 50 (1994) 1702

• Coincidence measurement of e^- and γ

Interactions between WIMPs and nucleus

We planned to study all the types of interaction!!

PICO-LON/MOON Project

- Planar Inorganic Crystal Observatory for LOwbackground Neutr(al)ino
- Molybdenum/Majorana Observatory Of Neutrino

• Aim

- Search for dark matter
- Search for double beta decay

Detector

- Thin NaI(Tl)
- Thin Plastic scintillator
- •Their Complex

Signal selection by Spatial and Timing Correlation (SSSTC)

- Signal Selection by Spatial Correlation
 - Signal \rightarrow 57.6keV γ + Low energy recoil
 - Localized event in space and time
 - Background \rightarrow U,Th chain, ⁴⁰K etc.
 - Diffused event in space and time
- Signal Selection by Timing Correlation
 - Signal \rightarrow No following events
 - Baclground → Time-correlated events by decay chain

Thin NaI(Tl) plate for performance test

NaI(Tl) 18cmX18cmX0.5cm

Energy resolution of thin Nal(TI)

Low energy threshold

Conclusion

- Thin NaI(Tl) plate has great advantages for
- DBD
 - Good energy resolution 3% FWHM @ 3MeV
- SN
 - Low Q_{EC} value
- DM
 - Low energy threshold
 - Study various types of interaction