

Energy Calibration of the CUORE Bolometric Double Beta-Decay Experiment

Karsten M. Heeger University of Wisconsin

on behalf of the CUORE Collaboration

Karsten Heeger, Univ. of Wisconsin

TeO₂ Bolometers

600

1000 1400 1800 2200 2600 3000 Time (ms)

DBDO

Calibration of Cuoricino/CUORE Bolometers

Gain Stabilization

For each bolometer an energy pulse generated by a Si resistor is used to correct pulse amplitudes for gain instabilities (\rightarrow every 5 min).

Voltage-Energy Conversion

Fit of a calibration measurement with a gamma source (e.g. ²³²Th) of known energy. Energy calibration performed regularly. (~ monthly).

Calibration Source Simulations

Max hit rate of 150 mHz per crystal to avoid pile-up, based on Cuoricino experience

Activity per discrete source:

- internal/external sources: 87 mBq/430 mBq
- internal/external sources edges: 126 mBq/1010 mBq

Optimization of Source Strength, Position, and Distribution

- achieve uniform illumination of all crystals with internal/external sources
- determine max source activity, minimize calibration time

event rate in crystals (2615 keV)

Calibration Source Simulations

DBD09, October 12, 2009

Key Issues

- Thermal loads meet heat load requirements of cryostat
- Calibration rate of < 150mHz for each bolometer to avoid pile-up
- Sources can be replaced. Other source isotopes can be used if necessary (e.g. ⁵⁶Co has been studied)
- Calibration time does not significantly affect detector live time
- Negligible contribution to radioactive background in the $\beta\beta0\nu$ region
- •Minimize the uncertainty in the energy calibration
- (< 0.05 keV)
- reasonable calibration time (< 1 week), minimize loss in detector livetime

Calibration uncertainty

- affects the resolution of the detectors
- is one of the systematic errors in the determination of the $0\nu\beta\beta$ half life

insertion of 12 γ sources that move under own weight

motion system: insertion and extraction of sources in and out of cryostat

guide tubes: no straight vertical access

source strings: move under own weight in guide tubes

source locations

top view of detector array with source positions

Karsten Heeger, Univ. of Wisconsin

DBD09, October 12, 2009

Source String

- flexible, moves under gravity in guide tube
- small mass: < 5 grams
- vertical distribution of source activity can be adjusted
- 30 capsules crimped and evenly spaced over 85 cm of Kevlar string

Guide Tubes

• stainless and/or machined from solid, low-background copper

radioactive source wire

•232Th: Thoriated Tungsten wire

• 56Co: proton activated Fe wire

Prototype Motion Tests

Mock-up of guide tube routing and motion system

Source Motion Monitoring

- encoder
- USB camera → absolute position
- proximity sensor \rightarrow senses capsules
- load cell \rightarrow string tension

- source moves reliably under its own weight
- position accuracy ~ 5 mm
- reproducible load cell pattern allows safe operation

Cryogenic Considerations

- Calibration system must be integrated with complex detector cryostat
- Must meet available cooling power requirements at all thermal stages

Stage	т [К]	Cooling power available to calibration [W]	Static heat load from guide tubes	Radiation from source string at 4K
40K	40 – 50	~	~	
4K	4 – 5	0.3	0.02	
0.7K	0.6 – 0.9	0.55m	0.13m	0.08 μ
70mK	0.05 – 0.1	Ι.Ιμ	negligible	0.3 μ
10mK	0.01	Ι.2 μ	Ι.07 μ	0.08 μ
detector	0.01	< 1µ		0.25 μ

- Thermal conductivity of guide tubes
- Radiation heat inflow from 300 K
- Heat radiated by the source strings
- Thermal conductivity of the source strings
- Friction heat during source string motion

Cooldown of the Source Strings

Friction During Source Motion

CUORE and Calibration System Schedule

CUORE data taking

CUORE construction

utilities clean room external shielding

cryostat assembly calibration system 4k test cryostat test cooldown

detector assembly:

front-end electronics DAQ

- 18+1 towers
- -~1000 detectors

calibration system installation & commissioning

Karsten Heeger, Univ. of Wisconsin

DBD09, October

Conclusions

- Energy is the key event signature for 0vββ candidate events in CUORE and for discriminating backgrounds.
- Energy calibration is critical for summing the spectra from the 988 individual CUORE detectors.
- The successful operation of CUORE, in the search for neutrinoless double beta decay, requires a reliable and efficient energy calibration system
- The design and integration of the calibration system is technically challenging and stringent requirements must be met.
- A complete design of the calibration system has been developed, prototype parts are being tested, and preparations for a 4K test of the system are under way.
- A 4K test of the system in the CUORE cryostat is planned for 2010.
- Commissioning of the full calibration system is expected for 2011.

CUORE Collaboration

18 institutions,101 collaborators

Europe, US, China

special thanks to Samuele Sangiorgio, Larissa Ejzak, and Angelo Nucciotti, for slides and figures on the calibration system

Karsten Heeger, Univ. of Wisconsin