Two-neutrino double beta decay in CUORICINO

Laura Kogler for the CUORICINO collaboration UC Berkeley/LBNL

Japan-US seminar on "Double Beta Decay and Neutrinos"

12. October 2009

Outline

- Overview of $2\nu\beta\beta$ measurements
- Prior measurements in ¹³⁰Te
- CUORICINO experimental setup
- Expected sensitivity and results
- Conclusion

Motivation for $2\nu\beta\beta$ Measurement

• $2\nu\beta\beta$ is an unavoidable background to $0\nu\beta\beta$

Motivation for $2\nu\beta\beta$ Measurement

- $2\nu\beta\beta$ is an unaviodable background to $o\nu\beta\beta$
- $2\nu\beta\beta$ measurements can be used to check or improve matrix element calculations for $0\nu\beta\beta$
 - Matrix elements are one of the major uncertainties associated with $ov\beta\beta$
 - $2\nu\beta\beta$ is one of the few experimentally observable processes that provides input/verification to models
 - $2\nu\beta\beta$ is commonly used to set the particle-particle interaction strength in QRPA models
 - However, $2\nu\beta\beta$ and $0\nu\beta\beta$ matrix elements are NOT identical

$2\nu\beta\beta$ Decay Rate and Spectrum

• The decay rate for $2\nu\beta\beta$ is given by:

$$\frac{1}{T_{1/2}^{2\nu}} = G^{2\nu}(E_0, Z) \left| M_{GT}^{2\nu} - \frac{g_V^2}{g_A^2} M_F^{2\nu} \right|^2$$

where $G^{2\nu}$ is the phase space factor, $M_{_{GT}}$ and $M_{_F}$ are the Gamow-Teller and Fermi matrix elements, and $g_{_V}$ and $g_{_A}$ are the vector and axialvector coupling constants.

- The form of the decay rate is similar to the neutrinoless expression, but is independent of $<\!m_{_{\beta\beta}}\!>$, and with different $M_{_{GT}}$, $M_{_F}$ and $G^{_{2\nu}}$
- Using an approximation for the Fermi factor (Primakoff & Rosen 1959), the energy spectrum is given by:

$$\frac{dN}{dE} \sim E(Q-E)^5 \left(1 + 2E + \frac{4E^2}{3} + \frac{E^3}{3} + \frac{E^4}{30}\right)$$

Challenges of $2\nu\beta\beta$ Measurement

• Broad spectrum overlaps natural γ and β radiation

[1] Boehm & Vogel, Physics of Massive Neutrinos, 1992

Challenges of $2\nu\beta\beta$ Measurement

- Broad spectrum overlaps natural γ and β radiation
- Background reduction strategy is necessary
 - Full Monte Carlo simulation of backgrounds
 - Other background subtraction method...

Challenges of $2\nu\beta\beta$ Measurement

- Broad spectrum overlaps natural γ and β radiation
- Background reduction strategy is necessary
 - Full Monte Carlo simulation of backgrounds
 - Other background subtraction method...
- CUORICINO strategy:
 - Use crystals with different enrichment as "blanks" for background subtraction

Prior $2\nu\beta\beta$ Measurements in ¹³⁰Te

- Geochemical experiments
- MiBeta
- NEMO3

- Technique is based on measuring isotopic abundances of daughter element in a sample of parent ore
- Parent ore is dated based on geologic environment or by other radiochemical dating methods (K-Ar, U-He, etc.)
- Measurements done on various samples since 1949 have yielded half-lives spanning almost 1 order of magnitude for $\beta\beta$ decay of ¹³⁰Te

$$\Gamma_{1/2} = 3 \cdot 10^{20} - 2.6 \cdot 10^{21} \, \text{y}$$

Prior $2\nu\beta\beta$ Measurements in ¹³⁰Te

- Geochemical experiments
- MiBeta
 - Used same enriched crystals as Cuoricino
 - Large systematic error due to non-uniform background in crystals (external source)
- NEMO3

 $T_{1/2} = [6.1 \pm 1.4(stat) + 2.9, -3.5(syst)] \cdot 10^{20} y$

Prior $2\nu\beta\beta$ Measurements in ¹³⁰Te

- Geochemical experiments
- MiBeta
- NEMO3
 - Source inserted as thin foil.
 - Detector has both tracking and calorimeter components.
 - Results from June 2009

V. Tretyak, MEDEX conference, June 2009

 $T_{1/2} = [6.9 \pm 0.9(stat) \pm 1.0(syst)] \cdot 10^{20} y$

Enriched Crystals in Cuoricino

- 2 crystals enriched to 75.0% ¹³⁰Te
- 2 crystals enriched to 82.3% ¹²⁸Te
- Enriched crystals are 3×3×6 cm³ and 330 g.
- Total mass of ¹³⁰Te ~350 g

Cuoricino Floor 12

Cuoricino Backgrounds

- Bulk and surface contaminations
- Cosmogenic activation of materials
- Cosmic ray muons
- Environmental and spallation neutrons
- Gamma rays from LNGS environment

 γ region, γ dominated by γ and β events. Highest γ line: 2615 keV ²⁰⁸TI (from ²³²Th chain)

α region,

 α dominated by a peaks (internal or surface contamination)

Cuts to reduce backgrounds

Cut type

Approx. signal loss

- Anti-coincidence
 - Cosmic ray induced showers
 - Surface contaminations
- Pulse shape
 - Low energy noise
 - Pileup events or deformed pulses

2% intrinsic 0.6% accidentals

2%

Single Crystal Spectra

Entire Cuoricino dataset, excluding high radon runs

Background Subtracted Spectrum

Expected Sensitivity

- Consider only E > 500 keV
- $N_{\rm tot} \sim 27000$ events in the enriched crystals
- $N_{sig} \sim 1300$ events after background subtraction
- A toy Monte-Carlo has been used to evaluate the statistical uncertainty given N_{tot} . The result is $\sigma_{sig} \sim 167$, which corresponds to a fractional error on the decay rate of ~13%, similar to other measurements.
- Preliminary analysis conducted with live time blinded, so exact event rate is unknown.

Expected Systematics

- The validity of the background subtraction is expected to be the dominant uncertainty.
- Background sources can be identified from peaks in residual spectrum; their location can be inferred from:
 - Peak shape
 - Coincidence spectrum between neighboring crystals
 - Relative strength of peaks in different crystals
- Backgrounds will be modeled with a detailed Monte Carlo simulation.
- Other systematics (error on efficiencies, energy calibration, etc.) are expected to be small compared to uncertainty in background model.

Conclusion

- A measurement of $2\nu\beta\beta$ of 130 Te in CUORICINO appears feasible and would provide a check on recent measurements
- Improvements in measuring this lifetime could inform matrix element calculations which would benefit $0\nu\beta\beta$ searches for neutrino mass.
- This measurement will require careful study of CUORICINO backgrounds.

CUORICINO Collaboration

M. Barucci, L. Risegari and G. Ventura

Dipartimento di Fisica dell' Università di Firenze e Sezione di Firenze dell' INFN, Firenze I-50125, Italy

L. Canonica^{1,2}, S. Di Domizio^{1,2}, E. Guardincerri^{2,3} and M. Pallavicini^{1,2}

1 Dipartimento di Fisica dell'Università di Genova e

2 Sezione di Genova dell'INFN, Genova I-16146, Italy

3 Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L'Aquila), Italy

M. Balata, C. Bucci, P. Gorla, S. Nisi and C. Tomei

Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L'Aquila), Italy E. Andreotti1,2, L. Foggetta1,2, A. Giuliani1,2, C. Nones1,2, C.

Rusconi1,2 and C. Salvioni1,2

1 Dipartimento di Fisica e Matematica dell'Università dell'Insubria , Como I-22100, Italy

2 Sezione di Milano Bicocca dell' INFN, Milano I-20126, Italy

V. Palmieri

Laboratori Nazionali di Legnaro, Via Romea 4, I-35020 Legnaro (Padova) C.Arnaboldi^{1,2}, C.Brofferio^{1,2}, S.Capelli^{1,2}, L.Carbone², M.Carrettoni^{1,2}, M.Clemenza^{1,2}, O.Cremonesi², E.Ferri^{1,2}, E.Fiorini^{1,2}, A. Giachero², L.Gironi^{1,2}, S.Kraft^{1,2}, C.Maiano^{1,2}, M. Martinez², A.Nucciotti^{1,2}, L. Pattavina^{1,2}, M.Pavan^{1,2}, G.Pessina², S.Pirro², E.Previtali², D.Schaeffer² and M.Sisti^{1,2}

1 Dipartimento di Fisica dell'Università di Milano-Bicocca, Milano I-20126, Italy 2 Sezione di Milano Bicocca dell'INFN, Milano I-20126, Italy

F.Bellini, R.Faccini, F.Orio and M.Vignati

Dipartimento di Fisica dell'Università di Roma La Sapienza e Sezione di Roma dell'INFN, Roma I-00185, Italy

J.W.Beeman¹, A.Bryant^{2,4}, E.E.Haller^{1,3}, L.Kogler^{2,4} and A.R.Smith²

1 Materials Science Division, Lawrence Berkeley National Laboratory,Berkeley, CA 94720

2 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

3 Department of Materials Science and Engineering, University of California at Berkeley, CA 94720, USA

4 Department of Physics, University of California, Berkeley, CA 94720, USA

M.J. Dolinski^{1,3}, K.Kazkaz¹, E.B. Norman^{1,2} M.Pedretti¹ and N.D.Scielzo¹

1 Lawrence Livermore National Laboratory, Livermore, CA 94550 USA

2 Department of Nuclear Engineering, University of California, Berkeley, CA 94720

3 Department of Physics, University of California, Berkeley, CA 94720, USA **T.D. Gutierrez**

California Polytechnic State University, San Luis Obispo, CA 93407 USA **F.T.Avignone III, I.Bandac, R.J.Creswick, H.A.Farach**,

C.Martinez, L.Mizouni and C.Rosenfeld

Department of Physics and Astronomy, University of South Carolina, Columbia S.C.29208 USA

L.Ejzak, R.H.Maruyama and S.Sangiorgio

University of Wisconsin, Madison, Wisconsin, 53706 USA

