

Double Beta Decay in SNO+

Mark Chen Queen's University DBD09 and APS/JPS DNP, Waikoloa, Hawaii

1000 tonnes D₂O

12 m diameter Acrylic Vessel

18 m diameter support structure; 9500 PMTs (~60% photocathode coverage)

1700 tonnes inner shielding H_2O 5300 tonnes outer shielding H_2O

Soud tormes outer shielding i

Urylon liner radon seal

depth: 2092 m (~6010 m.w.e.) ~70 muons/day

Sudbury Neutrino Observatory

SNO+

- \$300M of heavy water removed and returned to Atomic Energy of Canada Limited (every last drop)
- □ SNO detector to be filled with liquid scintillator
 - 50-100 times more light than Čerenkov
- linear alkylbenzene (LAB)
 - compatible with acrylic, undiluted
 - high light yield, long attenuation length
 - safe: high flash point, low toxicity
 - cheaper than other scintillators

physics goals: pep and CNO solar neutrinos, geo neutrinos, reactor neutrino oscillations, supernova neutrinos, <u>double beta</u> <u>decay with Nd</u>

Linear Alkylbenzene

SNO+ Double Beta Decay

- …sometimes referred to as SNO++
- \Box it is possible to add $\beta\beta$ isotopes to liquid scintillator, for example
 - dissolve Xe gas
 - organometallic chemistry (Nd, Se?, Te?, Mo?)
 - dispersion of nanoparticles (Nd₂O₃, TeO₂)
- we researched these options and decided that the best isotope and technique is to make a Nd-loaded liquid scintillator

Why ¹⁵⁰Nd?

□ 3.37 MeV endpoint (2nd highest of all $\beta\beta$ isotopes)

- above most backgrounds from natural radioactivity
- \square largest phase space factor of all $\beta\beta$ isotopes
 - □ 56 kg ¹⁵⁰Nd equivalent to (considering only the phase space)
 - ~220 kg of ¹³⁶Xe
 - ~230 kg of ¹³⁰Te
 - ~950 kg of ⁷⁶Ge
- □ isotopic abundance 5.6%

0.1% w/w natural Nd-loaded liquid scintillator in 1000 tonnes has 56 kg of ¹⁵⁰Nd compared to 37 g in NEMO-III

 \Box cost NdCl₃ is ~\$86,000 for 1 tonne

upcoming experiments use Ge, Xe, Te; Cd and Se proposed...we can deploy a large amount of Nd

Need to Know NME to Estimate Rate

□ ¹⁵⁰Nd has a fast rate but uncertainty in the NME

- calculations such as QRPA assumed spherical nuclei; do not take into account the large deformation seen in ¹⁵⁰Nd and its daughter nucleus ¹⁵⁰Sm
- our approach is experimentally motivated
 - for what is known ¹⁵⁰Nd is an attractive candidate
 - we have a technique to deploy a considerable quantity of Nd in a detector
 - complementarity with other experiments

Recent Progress: DBD Nuclear Deformation Studies

Nuclear deformation and neutrinoless double- β decay of ^{94,96}Zr, ^{98,100}Mo, ¹⁰⁴Ru, ¹¹⁰Pd, ^{128,130}Te and ¹⁵⁰Nd nuclei in mass mechanism

arXiv:0805.4073v4

K. Chaturvedi^{1,2}, R. Chandra^{1,3}, P. K. Rath¹, P. K. Raina³ and J. G. Hirsch⁴

Two-neutrino double beta decay of deformed nuclei within QRPA with realistic interaction

Mohamed Saleh Yousef, Vadim Rodin,* Amand Faessler, and Fedor Šimkovic[†]

Deformation and the Nuclear Matrix Elements of the Neutrinoless $\beta\beta$ Decay

J. MENÉNDEZ and A. Poves

Departamento de Física Teórica and IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049, Madrid, Spain

E. CAURIER and F. NOWACKI IPHC, IN2P3-CNRS/Université Louis Pasteur BP 28, F-67037, Strasbourg Cedex 2, France

Deformed Results From Chaturvedi et al.

used Projected Hartree-Fock-Bogoliubov framework NME smaller by factor of 2.6 compared to Rodin et al. 2007 spherical RQRPA

The $(\beta^-\beta^-)_{0\nu}$ decay of 94,96 Zr, 98,100 Mo, 104 Ru, 110 Pd, 128,130 Te and 150 Nd isotopes for the 0⁺ \rightarrow 0⁺ transition is studied in the Projected Hartree-Fock-Bogoliubov framework. In our earlier work, the reliability of HFB intrinsic wave functions participating in the $\beta^-\beta^-$ decay of the above mentioned nuclei has been established by obtaining an overall agreement between the theoretically calculated spectroscopic properties, namely yrast spectra, reduced $B(E2:0^+ \rightarrow 2^+)$ transition probabilities, quadrupole moments $Q(2^+)$, gyromagnetic factors $g(2^+)$ as well as half-lives $T_{1/2}^{2\nu}$ for the 0⁺ \rightarrow 0⁺ transition and the available experimental data. In the present work, we study the $(\beta^-\beta^-)_{0\nu}$ decay for the 0⁺ \rightarrow 0⁺ transition in the mass mechanism and extract limits on effective

Deformed QRPA

- spherical QRPA study
 fixes g_{pp} to reproduce
 2νββ experimental
 half-life
- new study examines
 deformation of ¹⁵⁰Nd;
 - g_{pp} changes in deformed QRPA analysis
- □ Rodin tells me he's working on M⁰^v calc

FIG. 6: The same as in Fig. 5, but for ¹⁸⁰Nd \rightarrow ¹⁸⁰Sm decay with 2 different sets of deformation parameters: from Ref. [21] ($\beta_2(^{150}Nd)=0.37$, $\beta_2(^{150}Sm)=0.23$, "def. (1)") and from Ref. [28] ($\beta_2(^{150}Nd)=0.24$, $\beta_2(^{150}Sm)=0.21$, "def. (2)").

The SNO+ Double Beta Concept

DBD: Why Good Energy Resolution is Needed?

to separate 0vββ from 2vββ
 to separate 0vββ signal from other gamma lines

Can You Live With Worse Resolution?

to separate 0\nu\beta\beta from 2\nu\beta\beta

 YES! by fitting the endpoint shape...resolution is less important when fitting spectral shapes than simply counting signal and background events in an energy bin

this is already done (e.g. NEMO-3)

- □ to separate 0vββ signal from other gam
 - YES! if there are no background gamm
- how to achieve zero (low) γ backgrounc
 - use B-field tracking detector: identify β[□] or
 - choose a high Q-value isotope abov
 with an ultra-low background detector

What Do Scintillators Offer?

- "economical" way to build a detector with a large amount of isotope
- several isotopes can be considered
- ultra-low background environment can be achieved (e.g. phototubes stand off from the scintillator, self-shielding of fiducial volume)
- with a liquid scintillator, possibility to purify *in-situ* to further reduce backgrounds
- possible source-in, source-out capability

56 kg of ¹⁵⁰Nd and $< m_v > = 100 \text{ meV}$

- 6.4% FWHM at Q-value
- 3 years livetime
- U, Th at Borexino levels
- 5σ sensitivity
- note: the dominant background is ⁸B solar neutrinos!
- ²¹⁴Bi (from radon) is almost negligible
- ²¹²Po-²⁰⁸TI tag (3 min) might
 be used to veto ²⁰⁸TI
 backgrounds; ²¹²Bi-²¹²Po
 (300 ns) events constrain
 the amount of ²⁰⁸TI

SNO+ DBD Residual Plot

SNO+ $\beta\beta$ Sensitivity

¹⁵⁰Nd SNO+ R&D Summary

Turning SNO into SNO+

□ to do this we need to:

- buy the liquid scintillator
- install hold down ropes for the acrylic vessel
- build a liquid scintillator purification system
- make a few small repairs
- minor upgrades to the cover gas
- minor upgrades to the DAQ/electronics
- change the calibration system and sources

Scintillator R&D

ASTM D543 "Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents"

LAB Light Attenuation Length

wavelengui, nin

SNO+ rope will be Tensylon: low U, Th, K ultra-high molecular weight polyethylene

Buckling and Finite Element Analysis

stresses below SNO limit of 600 psi
considered extreme case with empty AV surrounded by water outside: does not buckle

Inside AV Boating

no crazing or deterioration of acrylic seen

not heavy water!

boating has taken place inside the acrylic vessel

- to attach survey targets
- inspection for engineering re-certification

outside PSUP boating

First Campaign

Second Campaign

deviation from perfect sphere in mm

Deviations from Sphericity (2009 Survey)

Radius: Row by Row

Rows	Combined data sets				
	Radius (cm)	Min. Dev. (mm)	Max. Dev. (mm)		
110	600.838 ± 0.400	-3.36 ± 10.41	$+5.74\pm10.34$		
108	600.773 ± 0.272	-5.41 ± 7.85	$+3.68\pm7.88$		
106	602.326 ± 0.160	-5.05 ± 5.37	$+5.47\pm5.37$		
104	601.379 ± 0.072	-8.40 ± 3.85	$+4.09\pm3.43$		
102	601.136 ± 0.019	-10.15 ± 2.33	$+6.39\pm2.53$		
103	601.108 ± 0.050	-9.33 ± 2.94	$+6.82\pm2.95$		
105	600.946 ± 0.120	-4.99 ± 4.50	$+6.94\pm4.51$		
107	601.439 ± 0.240	-5.20 ± 6.58	$+5.47\pm6.87$		
109	601.329 ± 0.415	-5.00 ± 10.10	$+5.07\pm9.89$		
101	597.812 ± 0.024	-8.87 ± 2.34	$+7.19\pm2.66$		
All*	601.142 ± 0.007	-10.26 ± 1.94	$+7.09\pm2.10$		

*: 101 not included

as before, SNO AV is spherical to better than 0.5"

Detailed Survey Results to be Added to FEA

Radius: Spherical Harmonics

we are putting measured deviations into the FEA; re-run stress and buckling analysis

PSUP Panel Feedthroughs

PSUP feedthroughs being designed; detailed installation plan nearing completion

AIR HANDLING FLOWSHEET (see drawing # SLDO-SNP-FL-2001-01)

Entering the SNO Cavity – Bosun's Chair

Oleg Li

SNO+ meeting. Sudbury, August 25-26, 2009

Scintillator Purification and Process Systems

designed by KMPS (who built the successful Borexino system)

Nd Radiopurity

raw NdCl₃ salt measurement:
 ²²⁸Th at 32±25×10⁻⁹ g ²³²Th/g Nd
 purification target:

 ²²⁸Th and ²²⁸Ra in 10 tonnes of 10% Nd (in form of NdCl₃ salt) down to <1 ×10⁻¹⁴ g ²³²Th/g Nd

□ reduction factor of $>10^6$ required!!!

recall: SNO purified salted heavy water down to ~10⁻¹⁵ g/g level!!

Spike Test Results: Extraction Efficiencies of Th and Ra in 10% NdCl₃ using HZrO and BaSO₄

Purification	Adsorbent	Extraction efficiency	
method	Conc	228Th	226Ra
	0.1 mg/g Zr	<5%	<10%
	0.44 mg/g Zr	99.06±0.22%	30.7±5.7%
HZrO mixed-in	0.82 mg/g Zr	99.89±0.02%	30.1±9.0%
BaSO4 mixed-in	1.0 mg/g Ba	9.5±4.7%	63.4±1.9%
	0.49 mg/g Ba	20.4±4.4%	97.2±0.2%
BaSO4 co-precipitation	1.39 mg/g Ba	62.8±2.3%	99.89±0.03%

factor of 1000 purification per pass achieved for both Th and Ra!

Status of SNO+

- 2008-2010 funded by NSERC for final designs and initial construction plus operating grants for Alberta, Laurentian and Queen's \$2.6M
- Sep 2008: FedNor Innovation funds received \$380k
- >\$11M proposal (SNO+ portion) submitted to CFI LEF/NIF competition: October 2008
- approved in June 2009
- construction of hold-down net, cavity liner, anchors: designs and initial construction commenced in 2009 and will proceed into 2010
- contracts for scintillator procurement in Q3 2009
- orders for construction of purification plant Q3 2009
- scintillator process and purification system delivered for installation end of Q2 2010
- □ early 2011 \rightarrow process and purification systems installed, ready for scintillator filling
- commissioning and data taking in 2011

SNO+ Collaboration

- University of Alberta: A. Bialek, P. Gorel, A. Hallin, M. Hedayatipoor, C. Krauss
- Brookhaven National Laboratory: R. Hahn, Y. Williamson, M. Yeh
- Dresden University of Technology: K. Zuber
- Black Hills State University: K. Keeter
- Armstrong Atlantic State University: J. Secrest
- Laurentian University: O. Chkvorets, E.D. Hallman, S. Korte, M. Schumaker, C. Virtue
- University of Leeds: S. Bradbury, J. Rose
- University of Liverpool: N. McCauley
- LIP Lisbon: S. Andringa, N. Barros, J. Maneira
- University of North Carolina: M. Howe, J. Wikerson
- University of Oxford: S. Biller, N. Jelley, P. Jones, A. Reichold
- Queen Mary University of London: J. Wilson-Hawke
- University of Pennsylvania: E. Beier, R. Bonaventure, W.J. Heintzelman, J. Klein, G. Orebi Gann, T. Shokair
- Queen's University: M. Boulay, M. Chen, X. Dai, N. Fatemighomi, P.J. Harvey, C. Kraus, X. Liu, A. McDonald, H.O'Keeffe, E. O'Sullivan, P. Skensved, A. Wright
- SNOLAB: B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, I. Lawson, E. Vazquez Jauregui
- University of Sussex: A. Baxter, E. Falk-Harris, S. Fernandes, J. Hartnell, S. Peeters
- TRIUMF: R. Helmer
- University of Washington: J. Kaspar, J. Nance, N. Tolich, H. Wan Chan Tseung

fin