Japan-US seminar on Double Beta Decay and Neutrinos

Status of the DCBA Experiment DCBA: Drift Chamber Beta-ray Analyzer

Nobu ISHIHARA (KEK) for the DCBA collaboration

Contents

- 1. Introduction to DCBA
- 2. DCBA-T2 in engineering run
- 3. DCBA-T3 under construction

4. Future prospect of DCBA/MTD

Introduction to DCBA

Momentum analyzers to study

- Majorana nature by searching for $0\nu\beta\beta$
- Effective neutrino mass by measuring $T_{1/2}^{0\nu}$

Advantage of DCBA

- Background elimination by particle ID
- Characteristic pattern of $\beta\beta$ in a magnetic field
- Decay vertex determination
- Energy measurement of individual β (e⁻)
- Angular correlation between ββ

Disadvantage

- ♦ Energy resolution (FWHM≈100 keV) worse than Ge and Te calorimeter
- ◆ Low detection efficiency (≈30%)
- ◆ Large space for decay source installation

Principle of electron detection in DCBA

Momentum Acceptance p(MeV/c)=0.3r(cm)B(kG) $B\approx 2 kG$ 2 cm < r < 5 cm \downarrow 1.2 MeV/c

Energy Acceptance for e^- 0.8 MeV < T < 2.5 MeV

 α is automatically rejected $T=1 \text{ MeV} \rightarrow p \approx 87 \text{ MeV/c}$

Oct. 10-13, 2009

Straight track of a cosmic ray

Oct. 10-13, 2009

Position resolution of DCBA-T2

Energy measurement of an I. C. electron from ²⁰⁷Bi

Energy resolution of DCBA-T2

Energy spectra of internal conversion

Expected $\Delta E/E$ at Q = 6.3% (FWHM) for ¹⁵⁰Nd

h1 Entries 8393

Mean 0.9146

0.2058

RMS

FWHM

1.4

Wire pitch=6 mm

≈150keV

@980keV

enerav[MeV]

Other BGD events (1)

Oct. 10-13, 2009

Oct. 10-13, 2009

Engineering run of DCBA-T2 using

DCBA-T2 after installing Mo

Detection Efficiency for $2\nu\beta\beta$ in DCBA-T2

Back-to-back event of DCBA-T2 (Candidate of 2νββ)

Back-to-back event probably coming from ²¹⁴Bi

Background Event / Double Compton?

Differences between DCBA-T3 and T2

• Drift chamber Mini-jet chambers with multi-particle separation capability					
	DCBA-T3	DCBA-T2			
Source	$Nd_2O_3 (40 \text{ mg/cm}^2 \times 13,760 \text{ cm}^2)$ = 550 g : ¹⁵⁰ Nd = 0.18 mol)	Nd_2O_3 Natul. Mo:32g $^{150}Nd = 0.008$ $^{100}Mo=0.03$ mol			
Sensitive vol.	$8 \times (4(X) \times 44(Y) \times 44(Z)) \text{ cm}^3$ $4 \times (4(X) \times 20(Y) \times 44(Z)) \text{ cm}^3$	$9(X) \times 26(Y) \times 26(Z) \text{ cm}^3$			
Anode pitch	3 mm	6 mm			
Pickup pitch	3 mm	6 mm			
Signal readout	Flash ADC	Flash ADC			
X-position	Drift vel. × time : $\sigma_{\rm X} \approx 0.5$ mm	$\sigma_{\rm X} \approx 1 \text{ mm}$			
Y-position	Anode position : $\sigma_{\rm Y} \approx 0.2 \text{ mm}$	$\sigma_{\rm Y} \approx 0.2 \ {\rm mm}$			
Z-position	Pickup position : $\sigma_Z \approx 0.2 \text{ mm}$	$\sigma_Z \approx 0.2 \text{ mm}$			
• Magnet	SC-solenoid + F.R.Y.	Normal-sol.+ F.R.Y.			
Magnetic field	3.0 kG (Max.)	0.8 kG (Max)			
Uniform Vol.	80 dia. x 60 cm ³ $\delta B/B_0 < 1\%$	40 dia. x 60 cm ³ $\delta B/B_0 < 1\%$			
$\Delta E/E$ expected at Q	< 5% (FWHM)	6.3% (FWHM)			
Power consumption	1 kW (refri.)+10 W (power supply)	9 kW (Power supply)			

MTD (Magnetic Tracking Detector: temporary name) module after DCBA

Chamber cell : the same as DCBA-T3, Source plate: 80 m²/module Thickness: 40 mg/cm², Source weight: 32 kg/module

Expected event rate in MTD

Conditions

- Assumed effective mass $< m_{BB} >$ is 50 meV.
- Used $T_{1/2}^{0\nu}$ are from Faessler *et al.* presented at TAUP2009

and A. Staudt *et al.* in Europhys. Lett. 13 (1) (1990) 31.

- 50 modules of MTD are operated.
- Source thickness is 40 mg/cm²: thus 30 kg/mod \times 50 mod = 1500 kg.
- Event rate is obtained by $n = \varepsilon N_0 \ln 2 / T_{1/2}^{0\nu}$ where ε is the detection efficiency (=0.3) and N_0 the number of nuclei.

Item	Natural Nd	¹⁵⁰ Nd	¹⁰⁰ Mo	⁸² Se	⁷⁶ Ge
	(5.6% ¹⁵⁰ Nc	l) (60% enr.)) (90% enr.)	(90% enr.)	(90% enr.)
Amount (mol)	560	6000	13500	16460	17760
Faessler $T_{1/2}^{0\nu}$ (y)	3.55×10^{25}	3.55×10 ²⁵	3.33×10 ²⁶	3.50×10 ²⁶	1.10×10 ²⁷
Event rate (y ⁻¹)	2	21	5	8	2
Staudt $T_{1/2}^{0\nu}$ (y)	1.35×10 ²⁵	1.35×10 ²⁵	5.08×10 ²⁶	2.41×10 ²⁶	9.32×10 ²⁶
Event rate (y ⁻¹)	5	55	3	9	2

DCBA collaboration

- N. Ishihara¹, G. Iwai¹, H. Iwase¹, Y. Kato¹, M. Kawai¹, Y. Kondou, T. Haruyama¹, T. Inagaki¹, Y. Makida¹,
- T. Ohama¹, K. Takahashi¹, S. Takeda¹, Y. Yamada¹,
- H. Igarashi², T. Ishikawa², T. Sumiyoshi², E.Tashiro³,
- T. Ishizuka³, S. Kitamura⁴, Y. Teramoto⁵, I.Nakano⁶,
- Y. Sakamoto⁷, Y. Nagasaka⁸, N. Tamura⁹, K. Tanaka¹⁰, R. Ito¹¹,
- ¹KEK, ²TMU, ³Shizuoka Univ., ⁴NMS, ⁵OCU,
- ⁶Okayama Univ., ⁷TGU, ⁸HIT, ⁹Niigata Univ., ¹⁰SSI,
- ¹¹Futurescope
- (26 persons from 11 Institutes)

Conclusions

- 1. DCBA is momentum analyzers for studying neutrinoless double beta decay.
- 2. DCBA-T2 has taken DBD candidates from natural Mo source plates of 45 mg/cm² thickness, which include 10% ¹⁰⁰Mo.
- 3. DCBA-T3 is now under construction at KEK, being expected to have the energy resolution of less than 100 keV (FWHM) for each electron in the energy range of 1 2 MeV.
- 4. Magnetic Tracking Detector (MTD: named temporarily) is the future project based on DCBA. The energy resolution of MTD is expected to be less than 4% (FWHM) at the Q-value of ¹⁵⁰Nd (3.37 MeV). MTD of 50 modules will make it possible to investigate the effective neutrino mass down to 50 meV.