### Daya Bay Muon System

#### Qing He Princeton University

#### On behalf of Daya Bay Collaboration



Hawaii workshop

Oct. 12, 2009

< ≣ > 1 / 20

### **Background Sources**



- Accidental background
  - Natural radioactivity in the materials and around rock
  - Untagged neutrons
- Fast neutron:  $n_{fast} + p \rightarrow p + n^*$ 
  - Recoil proton generates the prompt signal
  - Capture of the thermalized neutron provides the delayed signal
- <sup>9</sup>Li/<sup>8</sup>He from cosmic muons
  - Long half life (0.18 s/0.12 s), hard to reject from muon tagging.
  - β-neutron cascade decay mimic inverse beta decay.



### Purpose of Muon System



- Shield the antineutrino detectors from natural and cosmogenic background. Attenuate rock radioactivity and fast neutrons.
- To register the presence of a cosmic ray muon and measure its time and position with respect to candidate events.
- The water also regulates the temperature of the antineutrino detectors

Hawaii workshop

O > < 
 O >



- Water Cherenkov detector: the Anti-Neutrino Detectors are immersed in a water pool with 2.5 m water in all directions.
  - Inner muon veto
  - Outer muon veto. Seperated by Tyvek reflectors from inner veto.
- RPC system: multiple layers of resistive plate chambers on top of pool



< D > < B >

| Item                       | Requirement             | Justification                                       |  |  |
|----------------------------|-------------------------|-----------------------------------------------------|--|--|
| Thickness of water shield  | >2m                     | Attenuate fast neutrons and                         |  |  |
| Thickness of water shield  | <u>~</u> 2111           | $\gamma$ rays from rock                             |  |  |
| Total efficiency for muons | >00 5%                  | Reduce fast-neutron background                      |  |  |
| Total efficiency for muons | 200.070                 | to a level below <sup>9</sup> Li/ <sup>8</sup> He   |  |  |
| Uncertainty of efficiency  | <0.5%                   | Maintain fast-neutron uncertainty                   |  |  |
| oncertainty of emclency    | _0.570                  | well below that of <sup>9</sup> Li/ <sup>8</sup> He |  |  |
| Random veto deadtime       | $\leq$ 15%              | Avoid undue impact on                               |  |  |
| Kandolli Veto deadtille    |                         | statistical precision                               |  |  |
| Position resolution        | 0.5 Jm poor AD          | Study radial dependence of                          |  |  |
| T OSITION RESOLUTION       |                         | cosmogenic background                               |  |  |
| Timing resolution          | $\pm 2 $ ns (Cherenkov) | Allow spatial reconstruction of muon                |  |  |
|                            | $\pm 25$ ns (RPCs)      | Limit random veto deadtime from                     |  |  |
|                            |                         | false coincidences to $O(1\%)$                      |  |  |



### Water Pool Geometry





# Inner and outer veto separated by Tyvek panels



< 🗗 🕨



Hawaii workshop

### Water Pool PMT



- Potted & encapsulated base
- Holder based on MiniBooNE design
- 8" PMTs:  ${\sim}1000$  in all, 2/3 new, 1/3 recycled MACRO PMTs
- Inner water shield:  $1 \text{ PMT}/8 \text{ m}^2$
- Outer water shield: 1 PMT/6-7 m<sup>2</sup>



### Water Conditioning System



- DYB Far pool: 2560 m<sup>3</sup>
- DYB Near pool: 1600 m<sup>3</sup>
- Requirement: attenuation length for Cherenkov light be on the order of the pool dimension or larger.
- Initial purification units include: biocide feeder, water softener, filters, and a reverse osmosis (RO) unit.



### Water Pool Veto Efficiency



- Simulation result with conservative assumptions:  $\lambda_{att} = 30 \text{ m}$ , Reflectivity  $\sim 80\%$ , Singles Rate=50 kHz/PMT, Dead time fraction  $\leq 1\%$
- Inner veto require >11 PMTs: 98% tagging eff.
- The baseline water shield muon trigger uses an OR of a multiplicity trigger for inner and outer shields.



# RPC system



Hawaii workshop

Oct. 12, 2009

→ 同 → → 三 →

< ≣ → 10 / 20

### **RPC Module Structure**



- RPC is composed of two resistive plates with gas flowing between them.
- Bakelite plates, RPC operated in streamer mode.
- The RPCs are constructed from a new type of phenolic paper laminates, the surface quality of these plates is improved compared to that of other bakelite plates.



イロト イヨト イヨト イヨト

### **RPC** Arrangement



- 4 layers of RPC module
- Each module slightly larger than  $2 \times 2 \text{ m}$ , overlap to exclude dead region



**RPC** support structure



Oct. 12. 2009

### **RPC** Readout Scheme



- Readout: strips of 25 cm (spatial resolution requirement ~50 cm) pitch of zigzag design, the effective width of the strip is 6 cm, the effective length of 8 m does not degrade the signal.
- Four layers, "x", "y" readouts alternate



< D > < B >

< ≣ ▶</li>13 / 20

### **RPC** Gas System



NEAR HALL Gas distribution system



 Gas misture: Ar/R134A/Isobutane/SF<sub>6</sub> = 65.5/30/4/0.5%

- Small fraction of SF<sub>6</sub> is essential for avoiding very large amount of charge delivered in the gas per single streamer.
- Electronic bubbler system monitors the chamber gas flow.



Hawaii workshop

< D > < B >

14 / 20

★ 문 → ★ 문 →

### **RPC Bare Chamber Test**



• Single layer efficiency > 95%, singles rate  $<0.5\,{\rm Hz/cm^2},$  dark current  $<5\,\mu{\rm A/m^2}$ 



Hawaii workshop

Oct. 12, 2009

・ロト ・回ト ・ヨト ・ヨト

### Muon Veto Efficiency

| Layers | $\geq 1$ | $\geq 2$ | ≥3      | $\geq$ 4 |      |                    |             |
|--------|----------|----------|---------|----------|------|--------------------|-------------|
| 1      | 95%      |          |         |          |      |                    |             |
| 2      | 99.75%   | 90.25%   |         |          |      | Pool Only          | Pool+RPC    |
| 3      | 99.987%  | 99.275%  | 85.74%  |          | Near | $98.85{\pm}0.12\%$ | 99.43±0.09% |
| 4      | 99.999%  | 99.952%  | 98.598% | 81.45%   | Far  | $98.81{\pm}0.12\%$ | 99.44±0.08% |

RPC requirement: hits in 3 out of 4 layers.



- Muon track length in water.
- Red histogram shows the events which miss both inner and outer water shield vetos.
- Most inefficient muons are short tracks from outer water shield (far away from AD).



< D > < B >

- The Daya Bay muon system consists of Water Cherenkov detector and RPC system.
- 99.5% muon veto efficiency is achievable.
- Currently, PMT potting and RPC bear chamber testing are under progress.
- RPC module assembly at IHEP is almost finished.
- Installation for the near hall is underway.



## Backup slides



Hawaii workshop

Oct. 12, 2009

< ≣ > 18 / 20

### **RPC** Installation



- A special installation platform shown above will be manufactured.
- This tool can help people to get access to the front end panel of the RPC module.



### Muon Reconstruction



- Distribution of reconstructed position minus true position.
- Preliminary results show that a resolution of  $\sim$ 40 cm can be achieved from inner water shield.



A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A