⁴⁸Ca Enrichment by using Crown-Ether Resin

UMEHARA Saori umehara@km.phys.sci.osaka-u.ac.jp

H. Kakubata, T. Kishimoto, S. Nemoto, M. Nomura, T. Kaneshiki, T. Suzuki, Y. Sakuma, Y. Fujii, CANDLES collaboration

Tokyo institute of Technology, Sophia University

Outline

Double Beta Decay of ⁴⁸Ca by CANDLES

- Enrichment of ⁴⁸Ca
 - ⁴⁸Ca Enrichment by using Crown-Ether Resin
 - Crown-Ether
 - Experimental Setup for Enrichment (Chromatography)
 - First Result : Isotopic Ratio ⁴⁸Ca/⁴⁰Ca

Further Enrichment : Long Time Experiment

Mass Spectrum of Calcium

Double Beta Decay of ⁴⁸ Ca		
^Φ Double Beta Decay of ⁴⁸ Ca by CANDLES		
CANDLES System CaF ₂ (pure) Scintillators	nucleus	V V
⁴⁸ Ca Higher Q _{ββ} -Value(4.27MeV)		• β
→Lower Background		Natural Abundanco
E_{max} =2.6MeV(²⁰⁸ TI, γ -ray)、	⁴⁰ Ca	96.941%
3.3MeV(²¹⁴ Bi,β-ray)	⁴² Ca	0.647%
but smaller Natural Abundance	⁴³ Ca	0.135%
	⁴⁴ Ca	2.086%
	⁴⁶ Ca	0.004%
UMEH	⁴⁸ Ca	0.187%

Enrichment of ⁴⁸Ca

For Study of ⁴⁸Ca $0v\beta\beta$ by CANDLES It needs a large amount of ⁴⁸Ca(~10kg)

- \rightarrow 1st Step : Large scale detector : CaF₂ of 300kg ~ a few ton
- \rightarrow 2nd Step : ⁴⁸Ca enrichment (~2%~)

Crown-Ether

Isotope Enrichment by Crown-Ether

- Crown-ether rings adsorb Calcium ions
- For calcium,⁴⁰Ca adsorption in crown-ether is slightly prior

Measurement of Ca Concentration and Isotopic Ratio

Ca Concentration Flame photometry

Observation of Light (Wave length = 622nm)

Measurement by using PMT

Isotopic ratio of ${}^{48}Ca/{}^{40}Ca$ and others (${}^{42}Ca, {}^{43}Ca, {}^{44}Ca$) $\overline{}^{D09}$

Isotopic Ratio ⁴⁸Ca/⁴⁰Ca

Result of Migration Length 1m

First Test:Measurement of Isotopic Ratio

by using TIMS(Thermal Ionization Mass Spectrometer)

Isotopic Ratio

Current Rough Estimation

- Crown-Ether Resin 30ton : \$30M
 Migration time : 1.5 years
- for improvement
 - Kind of Crown-ether
 - Now:Benzo-18-crown-6-ether
 - Candidate : for example. . .

Dibenzo-18-crown-6-ether \rightarrow inexpensive (~1/10)

- Optimization of migration parameter
 - Solvent : (now) HCl \rightarrow (Candidate) Organic solvent (methanol. . .)
 - Good adsorptive rate

 $\ref{Migration speed}$: (now)0.3ml/min,1ml/min \rightarrow 3ml/min...

time effective

Future: Detector system for Double Beta Decay

CANDLES System

CaF₂(pure) Scintillators Liquid Scintillator

Summary

48Ca Enrichment by using Crown-ether

to apply Crown-ether resin

Isotope Effect

- Crown-ether adsorbed Ca ion
- 48Ca is enriched in solution phase.
- 4.6%(max) up of ⁴⁸Ca abundance with ~7hours Exp.
- Isotopic ratio of ⁴⁸Ca increased with migration length
- Ca volume: ×17

Maximum isotopic ratio: $\times 8$ \int with ~250 hours Exp.

In future

Study for a higher isotopic ratio, a larger amount of ⁴⁸Ca

with cost and time effective parameters