Double Beta Decay of ¹³⁶Xe with KamLAND

Sei Yoshida Research center for Neutrino Science, Tohoku University for the KamLAND collaboration

KamLAND Collaboration

S.Abe¹, T.Ebihara¹, S.Enomoto¹, K.Furuno¹, Y.Gando¹, H.Ikeda¹, K.Inoue¹, Y.Kibe¹, Y.Kishimoto¹, M.Koga¹,
Y.Minekawa¹, T.Mitsui¹, K.Nakajima¹, K-H.Nakajima¹, K.Nakamura¹, M.Nakamura¹, K.Owada¹, I.Shimizu¹,
Y.Shimizu¹, J.Shirai¹, F.Suekane¹, A.Suzuki¹, Y.Takemoto¹, K.Tamae¹, A.Terashima¹, H.Watanabe¹, E.Yonezawa¹,
S.Yoshida¹, A.Kozlov², J.Busenitz³, T.Classen³, C.Grant³, G.Keefer³, D.Leonard³, D.MaKee³, A.Piepke³,
M.P.Decowski⁴, J.A.Detwiler⁴, S.J.Freedman⁴, B.K.Fujikawa⁴, F.Gray⁴, E.Guardincerri⁴, L.Hsu⁴, K.Ichimura⁴,
R.Kadel⁴, K.-B.Luk⁴, H.Murayama⁴, T.O'Donnell⁴, H.M.Steiner⁴, L.A.Winslow⁴, D.A.Dwyer⁵, C.Jillings⁵,
C.Mauger⁵, R.D.McKeown⁵, C.Zhang⁵, B.E.Berger⁶, C.E.Lane⁷, J.Maricic⁷, T.Miletic⁷, M.Batygov⁸,
J.G.Learned⁸, S.Matsuno⁸, S.Pakvasa⁸, J.Foster⁹, G.A.Horton-Smith⁹, A.Tang⁹, S.Dazeley¹⁰, K.Downum¹¹,
G.Gratta¹¹, K.Tolich¹¹, W.Bugg¹², Y.Efremenko¹², Y.Kamyshkov¹², O.Perevozchikov¹², H.J.Karwowski¹³,
D.M.Markoff¹³, W.Turnow¹³, K.M.Heeger¹⁴, F.Piquemal¹⁵, and J.-S.Ricol¹⁵

15. CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I

KAMioka Liquid scintillator Anti-Neutrino Detector

Dodecane (C12H26) : 80%

Pseudocumene : 20% (1,2,4-Trimethyl Benzene)

PPO 1.36 g/l (2,5-Diphenyloxazole)

- Mineral Oil : Buffer against external BG
- 1979 PMTs(17" 1325 + 20" 554)
- Photocathod coverage : 34%
- Outer water Cherenkov detector for muon veto

KamLAND Detector

PMTs

1 kt Liquid Scintillator

¹³⁶Xe as $\beta\beta$ Isotope

- Advantages of ¹³⁶Xe
 - Q-value ; valley of natural RI background
 - Gaseous isotope can be purified during the experiment
 - No long lived unstable Xe isotopes
 - Easy to enrich

Ονββ in KamLAND

<u>Ονββ in KamLAND</u>

- Low-background condition
- Large volume detector \rightarrow high scalability
- Well-understood (measured) background model
- Liquid detector allows for additional in-situ purification.
- No further modification to the detector \leftarrow dissolve/load $\beta\beta$ isotope in LS
- Anti-neutrino measurements ; simultaneously

¹³⁶Xe in KamLAND

- Easy to dissolve ; more than 3 wt%
- Easy to extract
- $T_{1/2}^{2\nu\beta\beta}$ > 10²² yr \rightarrow require modest energy resolution

<u>High sensitivity with low cost</u>

Milestone in KamLAND $\beta\beta$ decay(1)

<u>1st Phase</u>

<u>This talk</u>

- Install mini-balloon into KamLAND.
- 250 ~ 400 kg of enriched ¹³⁶Xe loaded liquid scintillator
- Explore KKDC claimed region ; down to 60meV
- Keyword=Quickness ; Start data taking 2011/Spring

Milestone in KamLAND $\beta\beta$ **decay(2)**

<u>2nd Phase</u>

- 1000 kg of enriched ¹³⁶Xe loaded liquid scintillator
- Brighter LS development (target; ~40% increase L.Y.)
- Light concentrator (target; ~80%)
- Explore the inverted hierarchy region ; down to 25meV

R&D for 1st Phase

- Development of Xe loaded liquid scintillator
- Development of mini-balloon
- Construction of Xe gas handling system
- Minor modification of chimney region to install miniballoon
- Software development
 - Simulation for the background study
 - Data taking for new electronics

Joint Meeting of APS/JPS @Hawaii

Xe loaded LS for $\beta\beta$ decay (2)

Xe solubility measurement

Controlling LS temperature (Solubility depends on temp.)

Xe loaded LS for $\beta\beta$ decay ; Summary

LS candidate composition

- Density control
- Solubility
- Light yield → increase PPO

Development of mini-Balloon

• Experience of 13m KamLAND Balloon

KamLAND balloon structure

- Without using lamination glue
 - \rightarrow only use heat connection
- Using much thinner films

KamLAND balloon film (135 μ m)

Film connection is made by sandwiching an EVOH film (no-extended type) and heat welding with microwave.

Development of mini-Balloon

Requirements for Materials

- Low background
 - Radio-purity ; 10⁻¹³ g/g for U/Th
 - \bullet Less volume \rightarrow thin film (\sim 25 $\mu m)$
- Transparency to PPO emission wavelength (350 nm ~ 450 nm)
- Non-permeability for Xe gas
- Chemical compatibilities ; against PC, Decane and Dodecane
- Mechanical strength
- Without aging effect
- Candidate Film
 - Several kinds/thickness of films are tested.
 - EVOH (extended, non-extended)
 - Nylon
 - Multi-layer
 - Good Candidates ; EVOH with heat connection
 - \rightarrow 1st test mini-balloon will be made in October !

R&D of Balloon Films(1)

- Xe gas permeability measurement
 - Enriched Xe gas is so expensive. \rightarrow to avoid loosing gas

- Chemical compatibility/ Aging effect
 - Checking color, weight, chemical components in soaked liquid,......

R&D of Balloon Films(2)

- Optical transparency measurement
 - Using spectro-photometer

- Aging effect was also investigated by <u>acceleration method</u> with conditions of 45 deg.C, 40 days.
 - \rightarrow OK (Transparency, Mechanical strength, Weight)

R&D of Balloon Films(3)

- Mechanical strength test
 - Before/after soaking test in LS

Film sample (20mm × 40mm)

- Radioactive impurity measurement
 - Detection limit of ICP-MS ; ~ a few x 10^{-11} g/g for U/Th
 - Requirement ; ~ 10^{-13} g/g
 - Not achieved the required level.

 \rightarrow planning the Neutron Activation Analysis

Xenon Gas Handling System

- Requirements for Xe gas system
 - Repetition to dissolve/extract Xe gas into/from LS

for ex., if BG of mini-balloon is above the required level,

Radio-pure system against ²²²Rn emanation

Enriched ¹³⁶Xe (~92 %) is expensive,

- Small dead volume of Xe gas
- Large extraction efficiency → <u>loss-less extraction system</u>
- Without leakage ; < 10⁻⁵ Pa.m³/sec for whole system

Quality Control

- Dissolved Xe concentration
- Temperature control of Xe-LS, Transparency, Density control, Chemical composition of LS, etc.....
- Impurity measurement (O₂ contents, RI's)

<u>We have experience in the construction and operation of the</u> <u>distillation system.</u>

Xenon Gas Handling System

Conceptual design of Xe handling system

Xenon Gas Handling System

- We have much experience in
 - LS/Xe dissolve system \rightarrow purge tower system
 - Gas handling \rightarrow pure Nitrogen generator

Background Studies for $\beta\beta$ decay

- Background Candidates in 1st Phase
 - KamLAND ; Current background around $Q_{\beta\beta}$ is well-understood.
 - 1. Cosmic-muon induced background ; ¹⁰C, ¹¹Be

→ tagging with new electronics

- 2. ⁸B solar neutrino → unavoidable in KamLAND
- After installing mini-balloon & Xe loaded LS

Joint Meeting of APS/JPS @Hawaii

Background Studies (1)

- Spallation background ; ¹⁰C
 - New dead time free electronics for tagging neutron after muon
 - <u>New electronics is being installed.</u>

Background Studies (2)

Toward spallation background rejection

• New electronics MOGURA installation

• Ready to start data taking at ~ the end of this year.

Joint Meeting of APS/JPS @Hawaii

Background Studies (3)

²¹⁴Bi, ²⁰⁸Tl in mini-balloon

- Rejection by delayed coincidence
- Range of α-particle in materials ~ short ; rejection efficiency is expected to be small, relatively (~70%).
 - → also use ²¹⁴Pb ²¹⁴Bi coincidence
- ²⁰⁸Tl ; energy deposition above 2.6MeV but if light yield of Xe-LS is different with KamLAND-LS, →

212Po

0.3 μs

Expectation in 1st Phase $\beta\beta$

Simulated energy spectrum

- Backgrounds are expected far below the ¹³⁶Xe $0\nu\beta\beta$ peak.
- Sensitivity of 1st phase ; below KKDC claim

Time Table of the $\beta\beta$ Project

Summary

Next physics target of KamLAND ; Ονββ decay
 Enriched ¹³⁶Xe dissolved liquid scintillator

Milestone

- 1st phase ; 250 ~ 400 kg of Xe \rightarrow 60 meV (KKDC claim, degenarate)
- 2^{nd} phase ; 1000 kg of Xe with increasing L.Y. \rightarrow 25 meV

(inverted hierarchy)

R&D items for 1st phase

- Xe-LS development ; already finished
- Development of mini-balloon ; making 1st text balloon
- Xe gas handling system & quality control system

; designing & development

Background study ; simulation studies are finished,

New electronics is being installed.

Ist Phase ; start data taking on 2011/spring