Double Beta Decay of 136Xe with KamLAND

Sei Yoshida
Research center for Neutrino Science, Tohoku University
for the KamLAND collaboration
KamLAND Collaboration

S. Abe¹, T. Ebihara¹, S. Enomoto¹, K. Furuno¹, Y. Gando¹, H. Ikeda¹, K. Inoue¹, Y. Kibe¹, Y. Kishimoto¹, M. Koga¹, Y. Minekawa¹, T. Mitsui¹, K. Nakajima¹, K. H. Nakajima¹, K. Nakamura¹, M. Nakamura¹, K. Owada¹, I. Shimizu¹, Y. Shimizu¹, J. Shirai¹, F. Suekane¹, A. Suzuki¹, Y. Takemoto¹, K. Tamae¹, A. Terashima¹, H. Watanabe¹, E. Yonezawa¹, S. Yoshida¹, A. Kozlov², J. Busenitz³, T. Classen³, C. Grant³, G. Keefer³, D. Leonard³, D. MaKee³, A. Piepke³, M. P. Decowski⁴, J. A. Detwiler⁴, S. J. Freedman⁴, B. K. Fujikawa⁴, F. Gray⁴, E. Guardincerri⁴, L. Hsu⁴, K. Ichimura⁴, R. Kadel⁴, K.-B. Luk⁴, H. Murayama⁴, T. O’Donnell⁴, H. M. Steiner⁴, L. A. Winslow⁴, D. A. Dwyer⁵, C. Jillings⁵, C. Mauger⁵, R. D. McKeown⁵, C. Zhang⁵, B. E. Berger⁶, C. E. Lane⁷, J. Maricic⁷, T. Miletic⁷, M. Batygov⁸, J. G. Learned⁸, S. Matsuno⁸, S. Pakvasa⁸, J. Foster⁹, G. A. Horton-Smith⁹, A. Tang⁹, S. Dazeley¹⁰, K. Downum¹¹, G. Gratta¹¹, K. Tolič¹¹, W. Bugg¹², Y. Efremenko¹², Y. Kamyshev¹², O. Perevozchikov¹², H. J. Karwowski¹³, D. M. Markoff¹³, W. Turnow¹³, K. M. Heeger¹⁴, F. Piquemal¹⁵, and J. -S. Ricol¹⁵

¹. Research Center of Neutrino Science, Tohoku University
². IPMU, The University of Tokyo
³. Department of Physics and Astronomy, University of Alabama
⁴. Physics Department, University of California Birkeley/ Lawrence Berkeley National Laboratory
⁵. W. K. Kellogg Radiation Laboratory, California Institute of Technology
⁶. Department of Physics, Colorado State University
⁷. Physics Department, Drexel University
⁸. Department of Physics and Astronomy, University of Hawaii at Manoa
⁹. Department of Physics, Kansas State University
¹⁰. Department of Physics and Astronomy, Louisiana State University
¹¹. Physics Department, Stanford University
¹². University of Tennessee
¹³. Triangle Universities of Nuclear Laboratory/Physics Department, Duke University
¹⁴. Department of Physics, University of Wisconsin
¹⁵. CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I

Joint Meeting of APS/JPS @Hawaii October 13th, 2009
Geological anti-neutrinos

Reactor anti-neutrinos

PRL 100, 221805 (2008)
PRL 94, 081801 (2005)
PRL 90, 021802 (2003)

n-Disappearance, anti-neutrino from the Sun and other sources

PRL 96, 101802 (2006)
PRL 92, 071301 (2004)

Solar neutrino

Current target

Next physics target:
Neutrinoless double beta decay
KamLAND Detector

- Kamioka mine overburden: 2700 m.w.e.
- Muon rate: 0.33 Hz
- 1000 tons of Liquid Scintillator
- Mineral Oil: Buffer against external BG
- 1979 PMTs (17” 1325 + 20” 554)
- Photocathod coverage: 34%
- Outer water Cherenkov detector for muon veto

KAMioka Liquid scintillator Anti-Neutrino Detector

Dodecane (C12H25): 80%
Pseudocumene: 20%
(1,2,4-Trimethyl Benzene)
PPO: 1.36 g/l
(2,5-Diphenyloxazole)
2νββ half-life; Not yet observed
- Best experimental limit: > 1.0 x 10^{22} yr R.Bernabei et al.
- Theoretical expectation: ~ 10^{21} - a few x 10^{22} yr

Advantages of 136Xe
- Q-value: valley of natural RI background
- Gaseous isotope can be purified during the experiment
- No long lived unstable Xe isotopes
- Easy to enrich

Q_{ββ} = 2.479\text{MeV}
$0\nu\beta\beta$ in KamLAND

- Low-background condition
- Large volume detector \rightarrow high scalability
- Well-understood (measured) background model
- Liquid detector allows for additional in-situ purification
- No further modification to the detector
 \leftrightarrow dissolve/load $\beta\beta$ isotope in LS
- Anti-neutrino measurements; simultaneously

^{136}Xe in KamLAND

- Easy to dissolve; more than 3 wt%
- Easy to extract
- $T_{1/2}^{2\nu\beta\beta} > 10^{22}$ yr \Rightarrow require modest energy resolution

High sensitivity with low cost
1st Phase

- Install mini-balloon into KamLAND.
- 250 ~ 400 kg of enriched 136Xe loaded liquid scintillator
- Explore KKDC claimed region; down to 60meV
- Keyword=Quickness; Start data taking 2011/Spring

 KKDC claim

136Xe : 250~400kg mini-Balloon

(Final Xe volume depends on the budget.)
Milestone in KamLAND $\beta\beta$ decay (2)

2nd Phase

- 1000 kg of enriched 136Xe loaded liquid scintillator
- Brighter LS development (target: ~40% increase L.Y.)
- Light concentrator (target: ~80%)
- Explore the inverted hierarchy region; down to 25 meV
R&D for 1st Phase

- Development of Xe loaded liquid scintillator
- Development of mini-balloon
- Construction of Xe gas handling system
- Minor modification of chimney region to install mini-balloon

Software development
 - Simulation for the background study
 - Data taking for new electronics
Density control:

- Density of KamLAND LS = 777.2 kg/m³ @15 °C
- KamLAND LS components:

To dissolve Xe into LS → Lighten LS density:

- Decrease PC amount → decrease light output
- Similar chemical & optical property with lighter density

 Dodecane (C₁₂H₂₆) → Decane (C₁₀H₂₂)

Dodecane (C₁₂H₂₆) : 80 wt%
Pseudocumene : 20 wt%
1,2,4-Trimethylbenzene
PPO (C₁₅H₁₁NO) : 1.36 g/l
2,5-Diphenyloxazole

Density ; 0.75
Density ; 0.88
Density ; 0.735
Xe loaded LS for $\beta\beta$ decay (2)

- **Xe solubility measurement**
 - Controlling LS temperature (Solubility depends on temp.)

![Diagram of solubility setup](image)

- **Set point = 2.5 wt%**
 - T @ center of KamLAND
 - 10 ~ 13°C
 - There is enough margin if temp. would be fluctuated.

![Graph showing solubility vs temperature](image)

3.0 wt% @~15 °C
Xe loaded LS for $\beta\beta$ decay; Summary

LS candidate composition
- Density control
- Solubility
- Light yield \rightarrow increase PPO

81.8 wt%

Decane ($C_{12}H_{26}$)

18.2 wt%

Pseudocumene
1,2,4-Trimethylbenzene

2.7 g/l

PPO ($C_{15}H_{11}NO$)
2,5-Diphenyloxazole

Xe
- 2.5 wt%

Light emission ratio with KamLAND LS

Goal of light yield with Xe

w/o Xe

KLLS = 1.0

96%

after Xe dissolving
Experience of 13mφ KamLAND Balloon

To reduce background from mini-balloon materials
- Without using lamination glue
 → only use heat connection
- Using much thinner films

KamLAND balloon structure

Image of mini-Balloon (2.7 ~ 4 mφ)

KamLAND balloon film (135 μm)

Ny (25 μm)×3 \(\rightarrow \) EVOH(EF-XL) (15 μm)×2 \(\rightarrow \) Rn-barrier

Film connection is made by sandwiching an EVOH film (no-extended type) and heat welding with microwave.
Development of mini-Balloon

Requirements for Materials
- Low background
 - Radio-purity: $10^{-13} \text{g/g for U/Th}$
 - Less volume \rightarrow thin film ($\sim 25 \mu\text{m}$)
- Transparency to PPO emission wavelength ($350 \text{nm} \sim 450 \text{nm}$)
- Non-permeability for Xe gas
- Chemical compatibilities: against PC, Decane and Dodecane
- Mechanical strength
- Without aging effect

Candidate Film
- Several kinds/thickness of films are tested:
 - EVOH (extended, non-extended)
 - Nylon
 - Multi-layer
- **Good Candidates**: EVOH with heat connection
 \rightarrow 1st test mini-balloon will be made in October!
R&D of Balloon Films(1)

- Xe gas permeability measurement
 - Enriched Xe gas is so expensive. → to avoid loosing gas

Film sample

~45 °C

KamLAND LS

Xe gas leakage through films: less than a few kg/5 yr for every film samples

Chemical compatibility/ Aging effect
- Checking color, weight, chemical components in soaked liquid,
R&D of Balloon Films (2)

Optical transparency measurement
- Using spectro-photometer

Aging effect was also investigated by acceleration method with conditions of 45 deg.C, 40 days.

\[\text{OK (Transparency, Mechanical strength, Weight)} \]

Almost no absorption of scintillation light!

Compared with KamLAND-LS

PPO emission wavelength: 350 ~ 500 nm

Ratio; with/without film

EF-XL 12 \(\mu \text{m} \)

Set the film in a cell.
R&D of Balloon Films (3)

- Mechanical strength test
 - Before/after soaking test in LS

- Radioactive impurity measurement
 - Detection limit of ICP-MS: ~ a few \times 10^{-11} \text{ g/g} for U/Th
 - Requirement: ~ 10^{-13} \text{ g/g}
 - Not achieved the required level.

→ planning the Neutron Activation Analysis
Xenon Gas Handling System

- **Requirements for Xe gas system**
 - Repetition to dissolve/extract Xe gas into/from LS for ex., if BG of mini-balloon is above the required level,
 - Radio-pure system against 222Rn emanation

 Enriched 136Xe (~92 %) is expensive,
 - Small dead volume of Xe gas
 - Large extraction efficiency → **loss-less extraction system**
 - Without leakage; < 10^{-5} Pa.m3/sec for whole system

- **Quality Control**
 - Dissolved Xe concentration
 - Temperature control of Xe-LS, Transparency, Density control, Chemical composition of LS, etc......
 - Impurity measurement (O_2 contents, RI’s)

We have experience in the construction and operation of the distillation system.
Xenon Gas Handling System

Conceptual design of Xe handling system

Xe Storage Tank

LS Buffer Tank

N2 Gas

mini-Balloon

KamLAND Detector

Xe Storage

Tank

PC

Density Control

LS Cooling dev.

(Heat Exchanger)

Bypass Tank

Glove Box

Xe Compressor/

Cooling device

Press. Offset

balloon

LS Cooling dev.

(LS/Xe Mixer)

LS/LS

Xe/N2 Separator

Gas

Exhaust

LS Degas Tank

LS/Xe

Mixer

Bubbling

Flow control

valve

Press. Control

valve

Reverse valve

Glove Box

Vacuum pump

Bolower

Bubbling

Press. Control

valve

Flow control

valve

ON-OFF valve

Reverse valve

LS Condenser

LS trans. pump

Joint Meeting of APS/JPS @Hawaii

October 13th, 2009
Xenon Gas Handling System

We have much experience in

- LS/Xe dissolve system → purge tower system
- Gas handling → pure Nitrogen generator
Background Studies for $\beta\beta$ decay

Background Candidates in 1st Phase

1. Cosmic-muon induced background; 10C, 11Be
 - tagging with new electronics

2. 8B solar neutrino → unavoidable in KamLAND

After installing mini-balloon & Xe loaded LS

3. $2\nu\beta\beta$ decay of 136Xe
 - E-resolution: 7.8%/\sqrt{E}

4. 214Bi, 208Tl in mini-balloon
 - by delayed coincidence

5. 208Tl in KamLAND-LS & Xe-LS
 - tagging by delayed coin.
Spallation background: 10C

- **New dead time free** electronics for tagging neutron after muon
- New electronics is being installed.

Factor ~20 reduction by tagging neutrons
Toward spallation background rejection

- New electronics MOGURA installation

- Ready to start data taking at ~ the end of this year.
Background Studies (3)

214Bi, 208Tl in mini-balloon

- Rejection by delayed coincidence
- Range of α-particle in materials ~ short; rejection efficiency is expected to be small, relatively (~ 70%).
 ⇒ also use 214Pb - 214Bi coincidence

- 208Tl; energy deposition above 2.6MeV
 but if light yield of Xe-LS is different with KamLAND-LS, ⇒

\[212\text{Po} \quad 0.3 \, \mu s \]
\[212\text{Bi} \quad 61 \, m \]
\[208\text{Pb} \quad \text{stable} \]
\[208\text{Tl} \quad 3.05 \, m \]
\[214\text{Po} \quad \text{tag} \]
\[214\text{Bi} \quad 19.9 \, m \]
\[214\text{Pb} \quad 26.8 \, m \]
\[218\text{Po} \quad 214\text{Bi} \text{ r } Q_{\beta} \text{ = 3.27 MeV} \]
Backgrounds are expected far below the 136Xe $0\nu\beta\beta$ peak.

Sensitivity of 1st phase: below KKDC claim
Time Table of the $\beta\beta$ Project

1st phase; start data taking 2011 spring

Physics targets

0$\nu+2\beta$ 250–400 kg

Important demonstration for the continuous funding

0$\nu+2\beta$ 1000 kg

Aggressive estimation
3 month drain & dry
3 month deconstruction
2 month chimney modification
3 month construction
3 month LS filling
Next physics target of KamLAND: $0\nu\beta\beta$ decay

Enriched 136Xe dissolved liquid scintillator

Milestone

1. **1st phase:** 250 ~ 400 kg of Xe \rightarrow 60 meV (KKDC claim, degenerate)
2. **2nd phase:** 1000 kg of Xe with increasing L.Y. \rightarrow 25 meV (inverted hierarchy)

R&D items for 1st phase

- Xe-LS development; already finished
- Development of mini-balloon; making 1st text balloon
- Xe gas handling system & quality control system; designing & development
- Background study; simulation studies are finished, New electronics is being installed.

1st Phase; start data taking on 2011/spring