Status of CUORE

Yury Kolomensky LBNL/UC Berkeley 2009 Joint APS/JPS Meeting For the CUORE Collaboration

- Observation of $\beta\beta0\nu$ would mean
 - Lepton number violation
 - Neutrinos are Majorana particles
 - Rate measures electron neutrino mass (See Boris' talk for more profound implications)

10/13/2009

ββ0v Rate and Neutrino Mass

- Cost effective: Enrichment <u>not</u> *required*
 - □ Natural abundance 33.87%
- High Q = 2527.5 keV
 - □ Large phase space
 - Low gamma background: ROE between the Compton edge (2360 keV) and full
 ²⁰⁸Tl energy (2615 keV)
- $2\nu\beta\beta$ observed with geochemical, bolometric, and tracking techniques
- Extensive existing R&D with TeO₂ bolometers

Two Experimental Techniques

Source external to detector

Ex: NEMO, Super-NEMO

Source internal to detector

Ex: Gerda, EXO, CUORE and others

+: event topology, background rejection -: detector mass, resolution, acceptance

Technology: typically tracking detectors

+: detector mass, resolution, acceptance -: event topology, background rejection

Technology: calorimeters (bolometers, ionization, scintillation), tracking

Cryogenic Bolometers

Thermometer of Choice

Neutron-transmutation doped (NTD) Ge thermistor

NTD resistivity after doping:

$$\rho(T) = \rho_0 \exp\left(\frac{T_0}{T}\right)^{1/2}$$

Typical values: $\rho_0=1$ Ohm-mm, $T_0=3.1$ K, neutron fluence ~3.6×10¹⁸ cm⁻²

CUORE will use 1x1x3 mm³ thermistors with flat contacts to facilitate machine wire bonding. Irradiated at MIT NRL

Yury Kolomensky, CUORE

The CUORE Collaboration

Gran Sasso Laboratory

Two locations: Hall A (Cuoricino/CUORE) Hall C (R&D final tests for CUORE)

Shielding: 3500 m.w.e. Muons: $\sim 2 \times 10^{-8}$ /cm²-s Thermal neutrons: $\sim 1 \times 10^{-6}$ /cm²-s Epithermal neutrons: $\sim 2 \times 10^{-6}$ /cm²-s > 2.5 MeV Neutrons: 2×10^{-7} /cm²-s

Site for CUORE under construction in Hall A

The CUORE Project

Array of 988 TeO₂ crystals

11

- 19 towers suspended in a cylindrical structure
- 13 levels, 4 crystals each
- 5x5x5 cm³ (750g each)
- ¹³⁰Te: 33.8% isotope abundance

750 kg TeO₂ => 200 kg ¹³⁰Te

- New pulse tube refrigerator and cryostat
- Joint venture between Italy (INFN) and US (DOE, NSF)
- Under construction (past CD2/3 in the US)

Cuoricino, the prototype for CUORE

Cooled to 8-10mK

11 modules, 4 detector each, crystal dimension: $5x5x5 \text{ cm}^3$ crystal mass: 790 g 44 x 0.79 = 34.76 kg of TeO₂

Encased in a cryostat, lead shield, nitrogen box, neutron shield, and Faraday cage

2 modules x 9 crystals each crystal dimension: 3x3x6 cm³ crystal mass: 330 g $18 \ge 0.33 = 5.94$ kg of TeO₂

Total detector mass: 40.7 kg TeO₂ \Rightarrow 11.34 kg ¹³⁰Te Final dataset: 18 kg-y

Cuoricino Performance

- ✓ Relative calibration and stabilization of detector response with electronic heaters
- ✓ Absolute calibration every 1-2 months with external Th source

Energy Resolution

A. Bryant

Cuoricino Backgrounds

14

- $(40\pm10)\%$ in $\beta\beta0\nu$ region from ²⁰⁸Tl at 2615 keV
- α and β from inert material facing detector (e.g. Cu): (50±20)%
- α and β from surface contamination of crystals: (10±5)%
- Negligible contributions from neutrons and ⁶⁰Co at 2505 keV

Total background level in $0\nu\beta\beta$ region 0.18±0.01 counts/(keV kg y)

A. Bryant

Cuoricino Results

Spread is due to a range of published matrix elements

A. Bryant

From Cuoricino to CUORE

Standard sensitivity for a counting analysis:

16

Yury Kolomensky, CUORE

Background Reduction

Background model: CUORICINO

- $(40\pm10)\%$ in $\beta\beta0\nu$ region from ²⁰⁸Tl at 2615 keV
- α and β from inert material facing detector (e.g. Cu): (50±20)%
- α and β from surface contamination of crystals: (10±5)%
- Negligible contributions from neutrons and ⁶⁰Co at 2505 keV

CUORE strategy:

- improve shields & material quality
- improve bulk contamination in TeO₂ (SICCAS)
- reduce surface contribution from
 - TeO₂ crystals
 - components facing TeO₂ crystals (mainly copper)
- increased coincidence efficiency to reject surface background events
- Overall goal: 0.01 c/y/kg/keV

Test Facilities

- Dedicated test facility in Hall C
 - Extensive R&D on material characterization (bulk, surface contaminations) during Cuoricino
- Cuoricino cryostat in Hall A
 - Final high-statistics tests of surface cleaning technologies
- Low-counting facilities @ LNGS and LBNL
- All results cross-checked against Cuoricino data and scaled to CUORE with MC
 - E.g. benefits of increased coverage for multi-site event veto (anti-coincidence)

Bulk Contamination

Measured limits (10^{-12} g/g)

Contaminant	Method	²³² Th	²³⁸ U	⁴⁰ K	²¹⁰ Pb	⁶⁰ Co
TeO_2	bolometric	0.2*	0.1*	1	10μ Bq/kg	1μBq/kg
Copper	Ge detectors	2.4	1.3	0.3	-	$10 \mu Bq/kg$
Roman lead	Ge detectors	15	4	2	4 mBq/kg	$10 \mu Bq/kg$
Low act. lead	Ge detectors	5.4	2.3	1.6*	27 Bq/kg*	$180\mu\mathrm{Bq/kg^*}$

*: measured values; others are 90% CL limits.

Scaling to CUORE

Simulated	TeO_2	Cu	Pb	Total
element	crystals	structure	shields	
$0\nu\beta\beta$ decay region (counts/keV·kg·yr)	0.7×10^{-3}	0.6×10^{-3}	2.0×10^{-3}	3.3×10^{-3}
Dark matter region (counts/keV·kg·day)	2.3×10^{-2}	3.6×10^{-4}	0.3	0.3

Reduction in TeO₂ Surface Background

Etch crystals in dilute HNO₃ then polish with clean SiO₂ slurry

Copper Surface Contamination

- Improve surface cleaning techniques
 - Chemical
 - Plasma cleaning
- Alpha suppression
 - Polyethylene wrapping
 - Final test running now in Hall A

Best results so far

Element	Contamination	Contribution to the $0\nu\beta\beta$ region
	Bq/cm ²	counts/keV·kg·yr
TeO ₂	3×10^{-8}	0.5×10^{-2}
Copper	4.4×10^{-7}	3.5×10^{-2}
Total	-	4.0×10^{-2}

Additional factor of 2 from reduction of Cu surface area

CUORE-like

CUORICINO-like

10/13/2009

Yury Kolomensky, CUORE

Background Summary

Cuoricino bkgd $(0\nu\beta\beta) = 0.18 \text{ c/keV/kg/y}$

(a) Cryostat internal Cu shields (bulk) - 0.072 c/keV/kg/y

- (b) TeO_2 surfaces 0.018 c/keV/kg/y
- (c) Cu surfaces 0.09 c/keV/kg/y negligible contribution from neutrons

CUORE current estimate:

23

cleaner Cu shields and thicker internal Pb shield reduces (a) to <0.004 c/keV/kg/y etching and polishing crystals reduces (b) to <0.004 c/keV/kg/y clean or wrap Cu surfaces reduces (c) to <0.034 c/keV/kg/y reduce Cu surface area by ~ 2 reduces (c) to <0.017 c/keV/kg/y Total bkgd ~ < 0.025 c/keV/kg/y

Somewhat larger than the goal, however:

Some numbers are upper limits; c.f. recent Hall C estimate 0.016±0.003 c/keV/kg/year

Higher efficiency of anti-coincidence not yet accounted

10/13/2009

(impurities)

Additional Challenges

Cryogenics

10 mK base temperature
>1600 kg total mass @
10 mK
5 μW power @ 10 mK
20 t total mass inside
cryostat

Detector Calibration System

Internal to cryostat Minimize heat load Calibration time < 1 week while avoiding event pileup Energy scale uncertainty goal < 0.05 keV in $0\nu\beta\beta$ region

motion system:

insertion and extraction of sources in and out of cryostat

guide tubes:

no straight vertical access

source strings:

move under own weight in guide tubes

top view of detector array with source positions

Yury Kolomensky, CUORE

CUORE-0

- 1 full tower of CUORE (52 crystals), installed in Cuoricino cryostat by October 2010
 - Verify cleaning, assembly procedures
 - Bonus: better science reach than Cuoricino

CUORE Status

- Dedicated site in Hall A
 - Detector assembly in a clean room above cryostat
 - Detector hut and cryo support structures completed
- Cryostat purchased
 - Dilution unit being designed in Leiden, to be delivered by end of 2010
- Crystal delivery on schedule
 - 3 shipments of 60 crystals SICCAS
- NTD production on schedule
 - Irradiation complete, 1200 NTDs being produced
- Electronics designed and is being procured

Planned physics operations by end of 2012 5 year data taking period

U V R E

CUORE Sensitivity

Assume KKDC result: $T_{1/2}=25 \times 10^{23}$ y (also near Cuoricino limit) Background 0.01 c/keV/kg/year, 5 keV FWHM resolution, 5 years of running Assume conservative scaling of Co and Tl peaks Outcome of one possible experiment:

CUORE Sensitivity

1 σ limit: T_{1/2}=2x10²⁶ y (=2000x10²³ y) Background 0.01 c/keV/kg/year, 5 keV FWHM resolution, 5 years One possible outcome:

Yury Kolomensky, CUORE

CUORE Sensitivity

CUORE Sensitivity

A. Strumia and F. Vissani, hep-ph/0503246

Other Potential Measurements

- Reduction in the background levels, especially at low energy, make other physics measurements possible
 - \Box 2v $\beta\beta$ in Te (see L.Kogler's talk)
 - Dark matter search a la DAMA
 - \bigcirc Quenching factor of O(1) for bolometers
 - Look for annual modulation of detector rates
 - Requires low energy threshold (10 keV) and energy resolution of 1 keV at low energy
 - Solar axions through Bragg conversion
 - Rare nuclear transitions

Beyond CUORE $T_{1/2}^{0\nu}(n_{\sigma}) = \frac{4.17 \times 10^{26}}{n_{\sigma}} \left(\frac{a\varepsilon}{W}\right) \sqrt{\frac{Mt}{(1+\zeta)b\delta(E)}}$

- CUORE design is scalable to O(1 ton) detector
 - □ Relatively inexpensive isotopic enrichment of ¹³⁰Te
 - \Im > 500 kg of ¹³⁰Te
 - \bigcirc A factor of 3 increase in *a*
 - Other DBD isotopes can also be used bolometrically
- Additional background suppression
 - Scintillating bolometers
 See S.Pirro's talk
 - Ionization measurements
 - Surface-sensitive bolometers
 - Pulse shape discrimination through non-equilibrium phonons
- Important direction for future R&D

Conclusions

CUORE

- One of the largest mid-range experiments under construction
- Excellent physics potential
- Construction in progress: expect physics in 2013

