The CUORE Neutrinoless Double Beta Decay Experiment

Tom Banks (UC Berkeley, LBNL, & LNGS) DBD11 Workshop, Osaka, JP 15 Nov 2011

Neutrinoless double beta ($0v\beta\beta$) decay

- ► Extremely rare process ($T_{\frac{1}{2}} > 10^{24}$ y), if it occurs at all
- ▶ Requires massive, Majorana neutrinos $(v = \overline{v})$
- Violates lepton number = physics beyond SM

Neutrinoless double beta ($0v\beta\beta$) decay

If $0v\beta\beta$ is observed, it would

- 1. confirm neutrinos are Majorana particles (i.e., $v = \overline{v}$);
- 2. set constraints on the effective Majorana mass $\langle m_{\beta\beta} \rangle$, providing information about the absolute v mass scale;
- 3. possibly provide information about the mass hierarchy.

Neutrinoless double beta ($0v\beta\beta$) decay

If $0v\beta\beta$ is observed, it would

- 1. confirm neutrinos are Majorana particles (i.e., $v = \overline{v}$);
- 2. set constraints on the effective Majorana mass $\langle m_{\beta\beta} \rangle$, providing information about the absolute v mass scale;
- 3. possibly provide information about the mass hierarchy.

 $0v\beta\beta$ decay offers unique potential to probe unknown neutrino parameters

Detecting $0v\beta\beta$ decay

- General approach: Detect the two decay electrons
- Signature: Two simultaneous electrons with summed energy $Q_{\beta\beta}$, the Q-value for $\beta\beta$ in the isotope under study
- Energy resolution is critical to discriminating a tiny endpoint peak

Established experimental approaches

Use as calorimeter to watch for events of energy $E=Q_{\beta\beta}$

Use tracking detectors to watch for 2 β 's emitted from foil with energy $\Sigma E_{\beta} = Q_{\beta\beta}$

Good energy resolution

Large source mass

High efficiency

No particle identification

Poor energy resolution

Small source mass

Low efficiency

Particle identification

Established experimental approaches

Nascent experimental approaches

Source = Detector Xe-filled TPCs

Particle identification

Technically complex

Repurpose existing experiments

Large source mass

Poor energy resolution

No particle identification

Cuoricino/CUORE program

- CUORE: Cryogenic Undergound Observatory for Rare Events
- ► All cryogenic bolometer experiments searching for $0v\beta\beta$ decay in ¹³⁰Te

¹³⁰Te as $0v\beta\overline{\beta}$ candidate

- ► High natural abundance (~ 34%), so enrichment isn't necessary
- **b** Good Q-value @ 2528 keV: (1) above natural γ energies, (2) large phase space

Cryogenic bolometers

- Crystals of TeO₂ are cooled to ~ 10 mK ______ inside a dilution-refrigerator cryostat
- Cold crystals have such small heat capacities that single interactions produce measurable rises in temperature
- Temperature pulses are measured by thermistors glued to the crystals
- A pulse's amplitude is proportional to the energy deposited in the crystal

11

Cuoricino/CUORE method

The energy spectrum of detected pulses is compiled...

Cuoricino/CUORE method

13

Experiment location: LNGS, Italy

LNGS underground facility

- Gran Sasso National Lab (LNGS), managed by INFN, Italy's nuclear physics agency
- Branches off highway tunnel through mountain
- 1.4-km avg. rock overburden
 = 3100 m.w.e. flat overburden
 - → factor 10⁶ reduction in muon flux to ~ $3 \times 10^{-8} \mu/(s \text{ cm}^2)$
- ► 3 experimental halls (A, B, C)
- ► Hosts 15+ experiments

Cuoricino/CUORE facilities @ LNGS

Cuoricino experiment

- CUORE predecessor
- Operated March 2003 May 2008
- ► 62 TeO₂ crystal bolometers:
 - ▶ 44 "large" crystals (5x5x5 cm³, 790 g)
 - 18 "small" crystals: (3x3x6 cm³, 330 g)
 - ▶ 58 crystals made of natural 27% ¹³⁰Te
 - ▶ 2 small crystals enriched to 75% in ¹³⁰Te
 - ▶ 2 small crystals enriched to 82% in ¹²⁸Te

Cuoricino energy spectrum

Cuoricino energy spectrum

Cuoricino backgrounds

- There are three main sources of background in the region around the Q value:
 - (~35%) Compton events from ²⁰⁸TI gammas, from ²³²Th contamination in the cryostat (i.e., inside the lead shield)
 - (~55%) Degraded alphas from ²³⁸U and ²³²Th on copper surfaces
 - (~10%) Degraded alphas from ²³⁸U and ²³²Th on crystal surfaces
- ► The 2506 keV ⁶⁰Co peak is likely due to cosmic-ray activation of the copper

Cuoricino coincidence veto

Cuoricino results (2010)

Background: 0.169 ± 0.006 counts/keV/kg/yLower limit, half-life: $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) \ge 2.8 \times 10^{24}$ y (90% C.L.)Upper limit, Majorana v mass: $\langle m_{\beta\beta} \rangle < 300 - 710$ meV

CUORE

From Cuoricino to CUORE

- "Factor of Merit" formula assumes a Gaussian background
- Illustrates relationship between half-life sensitivity and detector parameters
- Sensitivity is the maximum decay signal that could be hidden by a background fluctuation at specified confidence level

From Cuoricino to CUORE

- "Factor of Merit" formula assumes a Gaussian background
- Illustrates relationship between half-life sensitivity and detector parameters
- Sensitivity is the maximum decay signal that could be hidden by a background fluctuation at specified confidence level

CUORE

Cryostat improvements

Cuoricino

- 20-year-old Oxford dilution refrigerator
- Periodic refilling of cryogens (LHe) causes dead time and thermal fluctuations
- Poor mechanical decoupling from detectors generates vibrational noise
- ▶ Minimum lead thickess \approx 22 cm
- ²³²Th contamination generates irreducible background in ROI of ~ 0.05 c/keV/kg/y

CUORE

- ► New, custom dilution refrigerator
- Cryogen-free (during operation)
 better duty cycle
- Detector suspension independent of refrigerator apparatus
- Minimum lead thickess \approx 36 cm
- Stringent radiopurity controls on materials and assembly

Detector improvements

- Cleaner crystals
- Cleaner copper, and less per kg TeO₂
- Cleaner assembly environment
- Tower frames less vibration-sensitive
- Better self-shielding & anticoincidence coverage

	Cuoricino	CUORE-0	CUORE
¹³⁰ Te mass (kg)	11	11	206
Background (c/keV/kg/y) @ 2528 keV	0.17	0.05	0.01
E resolution (keV) FWHM @ 2615 keV	7	5-6	5
〈m _{ββ} 〉 (meV) @ 90% C.L.	300-710	200-500	40-90

Engineering

Challenge is in scaling up the bolometric apparatus:

- Mass production of 988 ultra-radiopure crystal detectors
- Instrumentation of 988 detectors in close-packed, 13-tower array
- Complex, nested cryostat
- Multiple interconnected systems sharing tight space under very cold conditions
- Long cooldown time (~ 1 month) necessitates careful planning and robust systems

Cryostat

- ► 4 companies to pour, work, and form low-rad copper into 6 vessels + flanges
- Outer 3 vessels (300, 40, 4 K) are electron-beam welded
- Delivery scheduled for February 2012
- ▶ More delicate inner 3 vessels (600, 50, 10 mK) will be manufactured next year

Dilution refrigerator

- Custom made by Leiden Cryogenics in The Netherlands
- Cooled down to 5.26 mK in test setup in Leiden
- ► 5 μ W cooling power at 10 mK
- Complete, but delivery depends on vessel schedules

Hut

Nov 2011

Hut

Clean rooms

- Commissioned in summer 2011
- Crystals are glued and assembled into towers inside N₂-filled glove boxes

Clean rooms

Gluing station

Robot for mixing & dispensing glue

Robotic arm for

handling

crystals

Semi-automated setup enables more precise & uniform gluing

Clean rooms

CUORE tower assembly line (CTAL)

- ► The CTAL must transform 9994 separate pieces into 19 ultra-clean towers
- Approach: A single assembly station with 4 interchangeable glove boxes for specific tasks

CTAL working plane & tower garage

CUORE-0

First tower from CUORE assembly line

► Purpose

- **1**. Test of assembly-line procedures
- 2. Should surpass Cuoricino in physics reach while CUORE detector is being assembled

CUORE-0: 1st assembly attempt

October 2011

CUORE-0

First tower from CUORE assembly line

Purpose

- **1**. Test of assembly-line procedures
- 2. Should surpass Cuoricino in physics reach while CUORE detector is being assembled

► Schedule:

- ☑ Gluing in October 2011
- \Box Assembly in February 2012
- □ Installation in former Cuoricino cryostat
 - in March 2012
- □ Data taking 2012–2014

Experiment sensitivities

CUORE: $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) \ge 1.6 \times 10^{26} \text{ y} (1\sigma; 5 \text{ years})$

43

Experiment reach

Schedule

2008: Hut construction Crystal production

2009–2010: Crystal production Engineering/design/fabrication

2011-2014:

Crystal production Clean room commissioning CUORE-0 CUORE detector assembly CUORE cryogenics CUORE electronics & DAQ

2015: Data taking!

CUORE Collaboration

46

