Observation of 2vββ in ¹³⁶Xe with EXO-200

Jesse Wodin for the EXO collaboration

International workshop on double beta decay and neutrinos Osaka, November 2011

Overview of the EXO experiment

- EXO-200 (first phase)
 - 200 kg enriched ¹³⁶LXe (80%)TPC
 - Currently operating (as of early 2011) underground
 - Probe Majorana $m_v \sim 100$ meV scale
 - Confirm or refute KKDC result
 - Demonstrate feasibility of ton-scale xenon experiment
- "Full-EXO" (second phase)
 - I-10 ton-scale enriched ¹³⁶Xe $0\nu\beta\beta$ experiment
 - Probe Majorana $m_v \sim 5-20$ meV scale
 - R&D effort for "Ba-tagging" of $0\nu\beta\beta$ daughter nucleus as a means of radioactive background rejection

Advantages of Xenon

- No need to grow crystals
- Can be re-purified during the experiment (noble gas, easy with commercially available systems)
- No long-lived Xe isotopes to activate
- Can be easily transferred from one detector to another if new technologies become available
- Ba tagging (identification of ¹³⁶Ba daughter nucleus)
- ¹³⁶Xe enrichment
 - World production of Xe ~ 40 ton/yr
 - Noble gas: easy(er) to enrich
 - Centrifugal process very efficient (feed rate in g/sec, efficiency ~ $\Delta m = 4.7$ amu)

Measuring $0\nu\beta\beta$ with EXO-200

Measuring $0\nu\beta\beta$ with EXO-200

Measuring $0\nu\beta\beta$ with EXO-200

Ionization

e⁻

EXO-200 details

- 175 kg 136 Xe at 80.6% enrichment, liquid phase (167±0.1 K), both source and detector of $0\nu\beta\beta$
- Continuous Xe purification
- 468 Avalanche Photodiodes (LAAPDs) for scintillation light detection (ganged in groups of 7x, 67 total channels)
- 38/38 crossed U/V wire channels per side of TPC for ionization charge detection, 9 mm spacing (152 ch. total)
- Source calibration system allows for multiple miniaturized sources spanning wide energy range at different positions around TPC
- U/V charge signals and relative timing between charge and light give x,y,z event position, energy, PID, etc.
- Sited 2150' (1600 mwe) underground for shielding
- Muon veto system surrounding cleanrooms (~96% efficiency for µ traversing Pb)
- TPC surrounded by 50 cm (4 tonnes) HFE7000 cryo/shielding fluid (1.8 g/cm3), 2x 5cm low-activity Cu cryostats, 25 cm Pb
- Extensive program on radiopurity
 - All materials screened for low U/Th/K content
 - Thin walled (~ I.4 mm) Cu TPC for radio-purity

EXO-200 cryostat and TPC

EXO-200 TPC construction

EXO-200 TPC construction

EXO-200 TPC construction

Large Area Avalanche photodiodes

- Company: Advanced Photonix
- Low radioactivity construction (used bare, no window, no ceramic, EXOsupplied chemicals and metals*)
- Mass ~ 0.5 g/LAAPD
- ϕ I 6mm active diameter per LAAPD
- PE yield per photon >1 at 175 nm (NIST)
- Capacitance ~ 200 pF at 1400 V
- V ~ I 500 V, Gain ~ 200
- $\Delta V < +/- 0.5 V$
- ΔT < +/- 0.1K (driver for system temperature stability)
- Leakage current of array < $I\mu A$

* Nielson, R. et al., NIM A 608, I (2009)

EXO-200 LAAPD installation

EXO-200 TPC ready for shipment

EXO-200 Installation Site

- EXO-200 installed at WIPP (Waste Isolation Pilot Plant) in Carlsbad, NM
- 1600 mwe (2150-ft, 650m)
- Salt mine for radioactive waste storage
- Salt "rock" low activity relative to hard-rock mine

$$\Phi_u \sim 1.5 \times 10^5 \, yr^{-1} m^{-2} sr^{-1}$$

 $U\sim 0.048\,ppm$

 $Th\sim 0.25\,ppm$

$$K \sim 480 \, ppm$$

Esch et al, arXiv:astro-ph/0408486 (2004)

Completed EXO-200 facility at WIPP (2150' underground)

interior and

-

6 modular cleanrooms

N

VIEW INSIDE EXO-200 PRIMARY CLEANROOM MODULE (without front Pb walls)

Pb shielding

Xenon inlet

Cathode HV

100

100

Cryostat + TPC (inside)

Xenon outlet

DAQ electronics

Reach of EXO-200 and the future Full EXO experiment

Running configuration for spring 2011 $2\nu\beta\beta$ analysis

- Drift field E = -376 V/cm
- ~ 31 live days
- Source calibration ~ 2 hrs each day (⁶⁰Co, ²²⁸Th, multiple locations) for to monitor purity, resolution, calibration, other detector effects
- Continuous Xe recirculation through SAES purifiers at ~ 5 SLPM, LXe purity ~ 210-280 μs (max drift time ~ 110 μs)
- Conservative fiducial volume ~ 63 kg chosen for first analysis

Spring 2011 $2\nu\beta\beta$ analysis details

- Developed GEANT4 MC of EXO-200 (including geometry, signal generation, digitization, etc.); agrees well with source calibration
- Use charge + scintillation for event position reconstruction and PID
- Detector energy calibration with radioactive sources (511, 1173, 1333, 1593, 2615 keV)
- Charge signal corrected for Xe purity, monitored daily
- Muons (0.12% dead-time) and ²²⁰Rn events (6.3% dead-time) removed with cuts
- α spectroscopy used to bound ²³⁸U in LXe (daughter ^{234m}Pa β-decay with 2195 keV endpoint)
- 720 keV energy analysis threshold, (includes ~ 65% of $2\nu\beta\beta$ spectrum)
- Large library of PDFs (natural radioactivity, cosmogenics, exotics) generated for spectral fitting
- Use charge energy spectrum only for fitting (currently optimizing combined ionization + scintillation energy resolution)
- Final signal extraction: simultaneous fit of single and multiple cluster spectra to PDFs

Muon passing through TPC

Rn identification in LXe

 β : weak light signal, strong charge signal

²¹⁴Bi – ²¹⁴Po correlations in the EXO-200 detector

Using the Bi-Po (Rn daughter) coincidence technique, we can estimate the Rn content in our detector. The ²¹⁴Bi decay rate is consistent with measurements from alpha-spectroscopy and the expectation before the Rn trap is commissioned.

Rn identification in LXe

Using the Bi-Po (Rn daughter) coincidence technique, we can estimate the Rn content in our detector. The ²¹⁴Bi decay rate is consistent with measurements from alpha-spectroscopy and the expectation before the Rn trap is commissioned.

Source calibration in EXO-200

Sources:

¹³⁷Cs, ⁶⁰Co, ²²⁸Th

Various calibration sources can be brought to several positions just outside the detector

x-y distribution of events clearly shows excess near the source location

5

Example: 228Th energy calibration

- charge propagation
- scintillation propagation
- signal generation
- energy resolution parameterization is added in after the fact
- There are no free parameters for these comparisons (worst agreement is +8%)

Energy calibration from pair production events from ²²⁸Th source

Xenon purity monitoring with calibration sources

- Use sources to measure purity of LXe in TPC
- Rapid achievement of ms lifetimes results is a clear benefit of recirculation.

Jesse Wodin - DBD11

Energy calibration for charge-only $2\nu\beta\beta$ analysis

• After purity correction, calibrated single and multiple cluster peaks across energy region of interest (511 to 2615 keV)

-uncertainty bands are systematic

- Point-like depositions have large reconstructed energies due to induction effects
 - observed for pair-production site (similar to β and $\beta\beta$ decays)
 - reproduced in simulation
- Peak widths also recorded and their dependence on energy is parameterized.

Event reconstruction threshold

- Events > 100 keV well above charge trigger and reconstruction thresholds
- 3D reconstruction still requires determination of t₀ from scintillation signal
- Compare ratio of fully reconstructed events to triggered events to determine reconstruction efficiency
- Early software threshold ~700 keV
- Recent dramatic decrease with change in APD bias voltages ~300 keV

Constraints from alpha spectroscopy

- Investigate alpha spectrum for scintillation signals from ²³⁸U
- Calibrate spectrum with alphas in Rn chain
- Can constrain contamination of ²³⁸U in bulk LXe by searching for 4.5 MeV alphas

< 0.3 counts per day in our fiducial volume

-The same limit applies to its daughter 234m Pa which β decays with a Q-value of 2195 keV, which cannot then explain our LXe bulk signal

Measurement of $2\nu\beta\beta$ with EXO-200

- 63 kg active mass
- Signal / Background ratio 10:1
 - -as good as 40:1 for some extreme fiducial volume cuts

 $T_{1/2} = 2.11 \cdot 10^{21} \text{ yr} (\pm 0.04 \text{ stat}) \text{ yr} (\pm 0.21 \text{ sys}) [arXiv:1108.4193]$

Low background spectra

• constant in time

• $2\nu\beta\beta$ signal is clearly in the LXe bulk, while other gamma background contributions decrease with increasing distance from the walls.

Total background rate in $0\nu\beta\beta$ window < 4×10^{-3} cts/kg/yr/keV

- Backgrounds will further improve from
 - Rn tent installation
 - Closing of front outer Pb shield
 - Improvements in multicluster rejection

Systematic error budget for spring 2011 $2\nu\beta\beta$ analysis

 $T_{1/2}^{2\nu\beta\beta} = 2.11 \times 10^{21} \text{ yr} (\pm 0.04 \text{ stat}) (\pm 0.21 \text{ sys})$

- Fiducial volume 9.3%
- Multiplicity assignment 3.0 %
- Energy calibration 1.8%
- Background models 0.6%

CURRENT CONFIGURATION (NOVEMBER 2011)

Front Pb wall

0----

1 1115

Rn tent

The EXO Collaboration

D. Auty, M. Hughes, R. MacLellan, A. Piepke, K. Pushkin, M. Volk University of Alabama, Tuscaloosa AL

P. Vogel

California Institute of Technology, Pasadena CA

A. Coppens, M. Dunford, K. Graham, P. Gravelle, C. Hagemann, C. Hargrove, F. Leonard, K. McFarlane, C. Oullet, E. Rollin, D. Sinclair, V. Strickland

Carleton University, Ottawa ON, Canada

L.Kaufman

Indiana University

M. Moe

University of California, Irvine, Irvine CA

C. Benitez-Medina, S. Cook, W. Fairbank, Jr., K. Hall, N. Kaufold, B. Mong, T. Walton

Colorado State University, Fort Collins CO

D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov,

V. Stekhanov, O. Zeldovich

ITEP Moscow, Russia

B. Beauchamp, D. Chauhan, B. Cleveland J. Farine, J. Johnson, U. Wichoski, M. Wilson

Laurentian University, Sudbury ON, Canada

C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen University of Maryland, College Park MD

J. Cook, T. Daniels, K. Kumar, P. Morgan, A. Pocar, B. Schmoll, C. Sterpka, D. Wright

University of Massachusetts Amherst, Amherst MA D.Leonard

University of Seoul, Republic of Korea

M. Auger, D. Franco, G. Giroux, R. Gornea, M. Weber, J-L. Vuilleumier

Laboratory for High Energy Physics, Bern, Switzerland W. Feldmeier, P.Fierlinger, M. Marino

Technical University of Munich, Garching, Germany

N. Ackerman, M. Breidenbach, R. Conley, W. Craddock, S. Herrin, J. Hodgson, D. Mackay, A. Odian, C. Prescott, P. Rowson, K. Skarpaas, M. Swift, J. Wodin, L. Yang, S. Zalog

Stanford Linear Accelerator Center (SLAC), Menlo

Park CA

P. S. Barbeau, L. Bartoszek, J. Davis, R. DeVoe, M. J. Dolinski, G. Gratta, F. LePort, M. Montero-Diez, A.R. Muller, R. Neilson, K. O'Sullivan, A. Rivas, A. Saburov, D. Tosi, K. Twelker

Stanford University, Stanford CA

