

The Double Chooz reactor neutrino experiment

T. Hayakawa (Niigata U.) On behalf of the Double Chooz collaboration

Neutrino Oscillation

 $s_{ij} = \sin \theta_{ij}, \quad c_{ij} = \cos \theta_{ij}$

• Remaining parameters $\rightarrow \theta_{13}$, CP-violating phase δ , Mass hierarchy

Reactor Neutrino Experiment

W/ multi detectors

Reactor → Intense nu source

 Pure θ13 measurement
 ✓ Independent from CP-violating phase δ
 ✓ Small matter effect

• Multi detector concept

 ✓ Significant reduction of systematic errors

	Uncertainty	Chooz	DC
	Statistical	2.8%	0.4%
Reactor	Flux, σ	1.9 %	<0.1 %
	E/fission	0.6 %	<0.1 %
	power	0.7 %	<0.1 %
Detector -	# protons	0.8 %	0.2 %
	Det.eff.	1.5 %	0.5 %
)	Σ System.	2.7 %	~ 0.6%

Double Chooz Experiment

Double Chooz Collaboration

Web Site: www.doublechooz.in2p3.fr/

Double Chooz Detector

7m

New 4-region large detector concept

Outer Veto: plastic scintillator strips (400 mm-t)

v-Target: 10.3 m³ scintillator doped with 0.1g/l of Gd in an acryclic vessel (8 mm-t)

 γ -Catcher: 22.3 m³ scintillator in an acrylic vessel (12 mm-t)

Buffer: 110 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs

Inner Veto: 90m³ of scintillator in a steel vessel equipped with 78 PMTs

Veto Vessel (10mm) & Steel Shielding

T. Hayakawa (Niigata U.), DBD11, Osaka

Neutrino Detection

10

8

12 MeV

2

4

6

Milestones

- May 2008 October 2010
 - Far detector construction.
- December 2010
 Far detector filling completed.
- April 2011
 - Far detector commissioned.
- April 2011
 - ✓ Start physics data taking with far detector.
 - ✓ Near laboratory construction started.
- July 2011

Outer veto commissioned.

- November 2011
 FIRST DATA
- June 2012

Near laboratory expected delivery.

- Beginning 2013
 - Near detector expected.
 - Data taking with two detectors.

Reactor Neutrino Flux

- Recent work defining new reference on the neutrino flux prediction
 - → New flux calculation \Rightarrow +6%
- All reactor neutrino experiment are below
 - → use Bugey4 anchoring (as CHOOZ) \Rightarrow Far phase
 - → use 2 detectors \Rightarrow Near & Far phase

Neutrino Flux Uncertainties

- Total flux uncertainty budget dominated by Bugey4 anchoring point (like in CHOOZ)
- Very detailed simulation of all reactor cycle (MURE) and fuel evolution [reactor data input]

Data taking

- ✓ Number of data taking days : **206 days**
- ✓ Integrated data taking time in total : **177.4 days**
- ✓ Integrated data taking time for physics : **159.6 days**
- ✓ Data taking efficiency in total : 86.2 %
- ✓ Data taking efficiency for physics : 77.5 %

Detector Stability

Neutrino Selection

• Discard all triggers in 1ms after each muon

- PMT spontaneous light emission rejection cuts (using ratio Qmax/Qtotal, RMS of hit-time per PMT)
- Prompt signal within [0.7,12]MeV
- Delayed signal within [6,12] MeV
- •Coincidence window between [2, 100]μs
- Multiplicity condition
 - ≻E>500keV
 - ➤ -100µs < dTime < 400µs</p>

Neutrino Prompt Signal & Trigger Efficiency

- •Trigger threshold (defined as 50% efficiency) is 0.350MeV
- •Trigger efficiency is 100% +0/-0.4% above 0.7MeV
- → No Prompt Energy Cut Inefficiency

Delayed Energy Spectrum & Prompt-Delayed ΔT

✓ Selection of Neutron Capture on Gd only

- \rightarrow Allow to define the fiducial volume by the mass of Gd-loaded LS
- → Delayed Energy Cut Efficiency : 0.86 +/- 0.6%.
- \checkmark The efficiency within [2,100] μ s is 0.965 \pm 0.5%

Vertex Reconstruction

Т. Hayakawa (Niigata U.), DBD11, Usaка

Prompt energy vs Delayed energy

Background

- Accidental Backgroud
- prompt-like signal: radioactivity from materials, PMTs, surrounding rock
- \checkmark n signal: n from cosmic μ spallation,
- Correlated BG
- \checkmark Fast neutrons (by cosmic μ) gives recoil protons and are captured on Gd.
- ✓ Stopping-muons followed by muon-decay (Michel electron)
- ✓ Long-lived (9Li, 8He) β +n-decaying isotopes induced by μ .

Accidental Background

Accidental Background Prompt Event Visible Energy

- on time window: [2,100]µsec
- off time window: [1002,1100]µsec

Rate=(0.332±0.004)day-1

9Li/8He Background

□ 9Li events selection:

✓ Statistical

 ✓ Search for a triple delayed coincidence between showering muon and neutrino-like coincidence

□ Showering muon : E>600 MeV

Δt between showering muon and prompt event is given by the ⁹Lilike life time (257ms).

Rate: 2.3 -1.2 +1.2 per Day

Fast Neutron Background

Neutrino Analysis with prompt energy extended to 30 MeV

Two populations:

- ✓ Fast-n
- Stopping-muon

□ Rate:

 ✓ Extrapolation from high Energies to lower ones
 ✓ 0.7 -0.5 +0.5 per Day

□ Spectrum:

✓ Flat

✓ + Stopped Mu Shape Unc.

Rate=0.7 -0.5 +0.5 per Day

21

Reactor off-off data

Second reactor OFF for one day

➔ 3 events <30MeV</p>

- ✓ two possible Li/He candidates
- \checkmark one consistent with stopping-muon candidate

Oscillation Analysis

DC-T2K combination

Conclusions

□ Far Detector

- Data taking since April 2011
- Report of Analysis of 100 days of data.
- Hint for positive value of θ 13
 - $\sqrt{\sin^2(2\theta_{13})} = 0.085 \pm 0.029(\text{stat}) \pm 0.042(\text{syst})$

✓ No-Oscillation excluded at 92.1% CL

Near Detector

- Detector completed until end of 2012
- Far + Near detector data taking: Beginning of 2013

