Status of the RENO Reactor Neutrino Experiment

RENO = Reactor Experiment for Neutrino Oscillation (For RENO Collaboration)

J.S.Park Seoul National University November 14, 2011

DBD 2011, November 14-17 2011, Osaka

Outline

- Experimental Goal
 - Systematic & Statistical Uncertainties
 - Expected θ_{13} Sensitivity
- Overview of the RENO Experiment
 - Experimental Setup
 - YongGwang Power Plant
 - Detector Construction (completed in Feb. 2011)
- RENO Data-Taking (start from Aug. 2011)
 - Status
 - Energy Calibration
- Summary

Experimental Method of \theta_{13} Measurement

□ Find disappearance of $\overline{v_e}$ fluxes due to neutrino oscillation as a function of energy □ Identical detectors reduce the systematic errors in 1% level.

Expected Number of Neutrino Events at RENO

- 2.73 GW per reactor × 6 reactors
- 1.21x10³⁰ free protons per targets (16 tons)
- Near : 1,280/day, 468,000/year • Far : 114/day, 41,600/year

V3 years of data taking with 70% efficiency

Near : $9.83 \times 10^5 \approx 10^6$ (0.1% error) Far : $8.74 \times 10^4 \approx 10^5$ (0.3% error)

Expected Systematic Uncertainty

Syste	CHOOZ (%)	RENO (%)	
Reactor related absolute normalization	Reactor antineutrino flux and cross section	1.9	< 0.1
	Reactor power	0.7	0.2
	Energy released per fission	0.6	< 0.1
Number of protons in target	H/C ratio	0.8	0.2
	Target mass	0.3	< 0.1
Detector Efficiency	Positron energy	0.8	0.1
	Positron geode distance	0.1	0.0
	Neutron capture (H/Gd ratio)	1.0	< 0.1
	Capture energy containment	0.4	0.1
	Neutron geode distance	0.1	0.0
	Neutron delay	0.4	0.1
	Positron-neutron distance	0.3	0.0
	Neutron multiplicity	0.5	0.05
	2.7	< 0.5	

RENO Expected Sensivity

RENO Collaboration

(13 institutions and 40 physicists)

- Chonbuk National University
- Chonnam National University

Chung-Ang University

- Dongshin University
- Gyeongsang National University
- Kyungpook National University
- Pusan National University
- Sejong University
- Seokyeong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University
- □ California State University Domingez Hills, USA
- +++ http://reno01.snu.ac.kr/RENO

International collaborators are being invited

YongGwang Nuclear Power Plant

- Located in the west coast of southern part of Korea
- □ ~400 km from Seoul
- 6 reactors are lined up in roughly equal distances and span ~1.3 km
- Total average thermal output ~16.4GW_{th} (2nd largest in the world)

YongGwang(靈光): = glorious[splendid] light (~ psychic)

RENO Detector

- Inner PMTs: 354 10" PMTs
 - solid angle coverage = 12.6%
- Outer PMTs: ~ 67 10" PMTs

	Inner Diameter (cm)	Inner Height (cm)	Filled with	Mass (tons)
Target Vessel	280	320	Gd(0.1%) + LS	16.5
Gamma catcher	400	440	LS	30.0
Buffer tank	540	580	Mineral oil	64.4
Veto tank	840	880	water	352.6

total ~460 tons

Summary of Detector Construction

- 2006. 03 : Start of the RENO project
- 2008. 06 ~ 2009. 03 : Civil construction including tunnel excavation
- 2008. 12 ~ 2009. 11 : Detector structure & buffer steel tanks completed
- 2010. 06 : Acrylic containers installed
- 2010. 06 ~ 2010. 12 : PMT test & installation
- 2011. 01 : Detector closing/ Electronics hut & control room built
- 2011. 02 : Installation of DAQ electronics and HV & cabling
- 2011. 03 ~ 06 : Dry run & DAQ debugging
- 2011. 05 ~ 07 : Liquid scintillator production & filling
- 2011.07 : Detector operation & commissioning
- 2011. 08 : Start data-taking

Construction of Near & Far Tunnels (2008. 6~2009. 3)

by Daewoo Eng. Co. Korea

Installation of Acrylic Vessels (2010. 6)

PMT Mounting (2010. 8~10)

PMT Mounting (2010. 8~10)

Finishing PMT installation (2011.1)

Detector Closing (2011.1)

Detector Closing (2011.1)

Far : Jan. 24, 2011

Electronics Hut & Control Room Installed (2011.1)

PMT Cable Connection to DAQ Electronics (2011.2)

Dry Runs (2011. 3 ~ 5)

 Electronics threshold : 1mV based on PMT test with a bottle of liquid scintillator and a ¹³⁷Cs source at center

- CBX : TMHA (trimethylhexanoic acid)

Liquid Production System (2010. 11~2011. 3)

Liquids Filling

- Both near and far detectors are filled with Gd-LS, LS & mineral oil as of July 5, 2011.
- Veto water filling is completed at the end of July, 2011.

Water Circulation System

- Ultra-pure water system is ۲ important for VETO.
- Solenoid valve : Auto on/off •
- Feedback from the ultrasonic • level sensor of water level

Local water supply

Slow Control & Monitoring System

HV monitoring system

Environmental monitor

Why slow monitoring ?

- 1. To be required to control systematic effects
- 2. To allow automated scans of parameters such as thresholds and high voltages
- 3. To provide alarms, warnings, and diagnostic information to the operators

RUN Control & DAQ Monitoring

IP Camera System with Central Management System

Two detectors (ND/FD) are controlled & monitored from one (far) site
Both systems are quite stable & working smoothly

PMT Gain Matching

- PMT gain : set 1.0x10⁷ using a ¹³⁷Cs source at center
- Gain variation among PMTs : 3% for both detectors.

Data Taking with Near & Far Detectors

- Data taking began on Aug. 1, 2011 with both near and far detectors and has been in smooth progress.
- DAQ efficiency > 90%.
- Trigger rate of single low energy events : 70~80 Hz (Nhit > 90, i.e. E>0.5~0.6 MeV)
- Trigger rate of veto events : ~ 60 Hz (FD), ~530Hz (ND)
- Data taking shifts
 - Aug. 1 ~ Sep. 30 : 6 shifts per day inside both tunnels
 - Oct. 1 : 3 shifts per day in front of the far tunnel (remote control of both ND & FD detectors)

1D/3D Calibration System (2010. 8 ~ 2011. 7)

Two identical source driving systems at the center of TARGET and one side of GAMMA CATCHER

Energy Calibration and Comparison of ND & FD

- ~ 230 pe/MeV (sources at center)
- Identical energy response (< 1%) of ND & FD

We are observing Gd capture as expected by simulation at both detectors

Capture Time Distribution

BG Analysis

2.2 MeV y rays from cosmic muon induced neutron capture by Hydrogen

- Cosmic muons crossing the detector create neutrons
- ✓ Neutron could be later captured on Hydrogen & release ~2.2 MeV

✓ We know that how many produced per day & this BG can be measured and subtracted

Summary of RENO Status

- Construction of both near and far detectors at RENO are completed in Feb. 2011
- All the liquids including Gd-LS are produced and filled by end of July 2011
- Regular data-taking with NEAR & FAR detectors began from August 1, 2011
 - Preliminary result shows satisfactory detector performance
 - Detector calibration and comparison of ND & FD are performed
- Data reduction, source calibration, and Monte-Carlo reconstruction efforts are on progress & going on smoothly

First results on sin²(2θ₁₃) ~0.05 are expected to be available within a half year

- Goal: ~0.07 (end of this yr)
 - ~0.05 (March, 2012)

RENO group hope to tell the value of sin²(2θ₁₃) at the anticipated time
Goal: Neutrino 2012 @ Kyoto (June, 2012)